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ABSTRACT 

The TRADOC Analysis Center (TRAC), Naval Postgraduate School (NPS), and 

other Department of Defense (DoD) organizations are currently conducting large data 

capture and analysis efforts on areas all around the world. As efforts in the US Central 

Command (CENTCOM) Area of Responsibility (AOR), particularly in both Iraq and 

Afghanistan draw down, many senior decision makers expect that the US African 

Command (AFRICOM) AOR will be the focus of future efforts in the coming years. 

This project will first build an assessment framework focused on the AFRICOM 

AOR identifying what data we would ideally like to gather and measure in a COIN 

environment, and then by actually gathering the data points from a multitude of sources 

we can identify gaps in the available data. Concurrently, this effort will develop the 

necessary software within the DaViTo (Data Visualization Tool), an open source, 

government owned exploratory data analysis tool, in order to allow the end user to 

construct an assessment framework utilizing a customized weighting scheme along with 

the ability to display results. Finally, this project will develop a scenario methodology 

and a small Proof of Principle use case in Nigeria by conducting factor analysis of survey 

data and will use Generalized Linear Models (GLMs) in order to predict future issue 

stance scores and observed attitudes and behaviors of the population that will directly 

support TRAC’s Irregular Warfare Tactical Wargame (IW TWG). 
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SECTION 1. THE AFRICA KNOWLEDGE, DATA SOURCE, AND 
ANALYTIC EXPLORATION (KDAE) EXPLORATION PROJECT 

1.1. BACKGROUND 

The African continent has not always been at the forefront of American foreign policy. It 

was not even until the early 1960’s that the entire continent was assigned to a responsible 

military command, long after the other ones. The 1998 terrorist attacks against the two U.S. 

embassies in the East African capitals of Tanzania and Kenya, and the resulting retaliatory 

strikes by the Clinton Administration in the Sudan marked a major turning point in U.S. strategic 

policy and interest in the region (Ploch, 2011). In 2002, then President Bush in his 2002 National 

Security Strategy laid out future policy and actions in the region necessary to combat terrorism 

and its catastrophic effects not only upon the continent, but the entire world as well.  

In Africa, promise and opportunity sit side by side with disease, war, and desperate 
poverty. This threatens both a core value of the United States - preserving human dignity 
- and our strategic priority - combating global terror. American interests and American 
principles, therefore, lead in the same direction: we will work with others for an African 
continent that lives in liberty, peace, and growing prosperity. Together with our European 
allies, we must help strengthen Africa’s fragile states, help build indigenous capability to 
secure porous borders, and help build up the law enforcement and intelligence 
infrastructure to deny havens for terrorists (The White House, 2002). 

More recently, president Obama has reinforced this view is numerous press releases, policy 

documents, and public statements. In a speech to the Ghanian Parliament, he said: 

When there is genocide in Darfur or terrorists in Somalia, these are not simply African 
problems, they are global security challenges, and they demand a global response.... And 
let me be clear: our Africa Command is focused not on establishing a foothold on the 
continent, but on confronting these common challenges to advance the security of 
America, Africa, and the world (Obama, 2009). 

Security concerns as well as terrorists and Violent Extremist Organizations (VEOs) are 

not the only reason for the increase in U.S. interests in Africa, however. America’s increasing oil 

consumption and subsequent increasing reliance on foreign countries for oil has made finding 

willing trade partners a matter of vital national importance. America has gone from importing 

25% of its oil from foreign countries 20 years ago to importing nearly 60% today (Varner, 2007). 

Add to this the growing influence of China in the region as the Chinese similarly seek to quench 
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their increasing thirst for oil, and we see a Cold War like “battleground” where the U.S. and 

China are fighting for both diplomatic and economic influence in Africa. 

The chief national interests of the United States in Africa include an increasing 

importance on natural and energy resources, mounting threats and the growing concerns over 

VEOs, that include piracy and illegal trafficking, as well as the many humanitarian crises, 

brought about by famine and genocide (Ploch, 2011).  

1.2. OBJECTIVES 

The primary objectives of this effort are to determine the necessary information 

requirements to be used in order to measure progress in the region should the United States 

become involved in counterinsurgency operations similar to those currently ongoing in 

Afghanistan; identify, collect, and consolidate existing data sources in the region; and identify 

gaps between the required and existing data sources / information requirements. Concurrently, 

this effort will develop the necessary software within the DaViTo (Data Visualization Tool), an 

open source, government owned exploratory data analysis tool capable of displaying over 

100,000 data points simultaneously from multiple data sets consisting of multiple data types, in 

order to allow the end user to construct an assessment framework utilizing a customized 

weighting scheme and to display the results. Finally, this project will develop a scenario 

methodology and apply it in a small Proof of Principle use case in Nigeria by conducting factor 

analysis of survey data and will use Generalized Linear Models (GLMs) in order to predict 

future issue stance scores and observed attitudes and behaviors of the population that will 

directly support TRAC’s Irregular Warfare Tactical Wargame (IW TWG). 

1.3. ORGANIZATION OF THIS DOCUMENT 

The remainder of this document will focus on what has been accomplished thus far, 

including the development of the metric framework and the corresponding data sources 

(including a quantitative only data source “deep dive” into Nigeria and the surrounding Sahel 

region), as well as gaps between those information requirements specified in the metric 

framework and the available data sources. Additionally, the new DaViTo functionality allowing 

users to build an assessment framework and display the results will be described. Lastly, a “proof 

of principle” scenario will be developed using survey data and generalized linear models. 
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Finally, the appendices will go into greater detail about not only the metric framework, including 

a kind of “User’s Guide”, but also about specific data sources and how and where they can be 

found and updated. Specific details regarding the analyses with the corresponding R code will 

also be provided. 
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 SECTION 2. DEVELOPING THE METRIC FRAMEWORK 

2.1. MOTIVATION 

 The first task in this project was to determine what information requirements are 

necessary in order to measure progress, success or failure, in the event of U.S. involvement in 

some type of conflict on the African continent. For our purposes here, we define and gather our 

information requirements in a COIN environment, one similar to our current involvement in Iraq 

and even more so in Afghanistan. The proper development and use of metrics within a carefully 

nested assessment framework are critical to giving key decision makers the ability to make the 

correct decisions at the right place and time. This includes tracking or measuring progress 

against the objectives laid out in a campaign plan, as well as ensuring that subordinate 

headquarters’ metrics and assessment framework are aligned with those of higher. It is critically 

important that an assessment framework drive the decision making process, otherwise they 

become irrelevant. Too much information is just as bad as not enough as highlighted in a recent 

article: 

One persistent criticism is that operational assessments teams have overreached in the 
pursuit of perfection. Some have tried to measure the universe, attempting to aggregate 
all the disparate information in the battlespace. Others, at the other end of the spectrum, 
have thrown up their hands and accepted the constraints of statistical reporting, merely 
counting events rather than interpreting them. Another criticism is that assessments often 
proceed from flawed assumptions with little real-world evidence. The varied cast of 
agencies performing assessments can at once be criticized for being too complex in their 
methodology and too simplistic in their analysis. This has resulted in understandable 
disenchantment with the assessments process (Upshur, Roginski, & Kilcullen, 2012). 

The U.S. militaries recent experiences in both Iraq and Afghanistan have highlighted the 

importance of using metrics and their corresponding indicators that are measurable, collectible, 

and relevant. These two recent conflicts, both occurring in a COIN type environment, where 

precise knowledge of progress is even more difficult to discern than in an MCO construct, also 

highlight the difficulty of measuring the correct metrics over time, of maintaining the flexibility 

to adapt how forward progress is measured as the environment changes and the enemy adapts, 

and translating the large amounts of raw data into something of use to a decision maker. 
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2.2. FRAMEWORK 

 In light of this necessity, the members of this project team have built an 

assessment framework, with the goal of determining the information requirements that are 

needed to measure progress. The framework was built with input from many sources (described 

below and listed in References), and throughout the process every attempt was made to remain 

general enough and applicable to the entire continent of Africa. Consequently, this framework is 

just a tool or starting point, with the option, or necessity really, of “down selecting” certain 

measures that may be irrelevant or inane to a specific area, or impossible to find. A word of 

caution, however, using all 158 measures in the framework developed by this project as an 

assessment tool is ill-advised. There is way too much information here to synthesize down to a 

level whereby a staff or commander can make any sense of the whole.  

The first section in the framework is a section with information requirements that 

describe the overall operational environment and is intended to provide the user with a better 

understanding of the environment and a context with which they can more effectively measure 

progress. This section includes such information requirements as general information on the 

terrain in the area of operations (AO), population demographics, ongoing developmental projects 

in the AO, insurgents and violent factions operating in the AO, as well as organizations and 

government structure in the AO. Every attempt was made to tie each information requirement to 

specific data sources from the widest possible locations including U.S. government, various 

international organizations, academia, and Subject Matter Expert (SME) input. In Section 3 we 

will provide a more detailed description of the data collection efforts.  

The second section in the framework describes Lines of Effort (LOE), broken down into 

tasks, indicators, and measures. As a starting point, FM 3-24 Counterinsurgency was used to 

develop the overall Lines of Effort (LOE) for the assessment framework (United States, 2006). 

These include establishing civil security and control, support to Host Nation Security Forces 

(HNSF), support to governance, restoration/establishment of essential services, and support to 

economic and infrastructure development. We then broke down each LOE into specific tasks, 

each with its own indicator(s) and associated measure(s). The tasks, indicators, and measures 

were gathered from a variety of works and sources including FM 3-24, Counterinsurgency and 

FM 3-24.2, Tactics in Counterinsurgency (United States, 2009), a U.S. joint and interagency 



 7 

effort called Measuring Progress in Conflict Environments (MPICE) (Dziedzic, Sotirin, & 

Agoglia, 2008), various articles from COIN SMEs including David Kilcullen (Kilcullen, 2009), 

input from several former Special Forces officers (D. McCracken & S. Whitmarsh, personal 

communication, September 15, 2011) and U.S. government employees with extensive experience 

on the continent of Africa (S. Kasten, personal communication, September 30, 2011), and 

recently deployed operational research analysts (G. Kramlich, personal communication, October 

15, 2011) to include my own experiences in Afghanistan as a member of an assessments cell. All 

of this input was pulled together and used to create the assessment framework itself, and 

subsequent efforts, as described in the paragraph above and in Section 3, attempted to tie each 

measure to a specific data source from a multitude of locations. 

The document containing the actual assessment framework is too large to be incorporated 

in this technical report, and so it can be viewed or downloaded at this link.  

2.3. THE ASSESSMENT FRAMEWORK IN DAVITO 

In direct support of the efforts of this project, TRAC’s Data Visualization Tool (DaViTo) 

was modified to include the capability to not only build an assessment framework, but to 

visualize chosen measures and subsequent “progress” as well. DaViTo is an exploratory data 

analysis tool employed across DoD that enables analysts to conduct first level analysis into data 

sets as well as to visualize and refine second order analyses. 

TRAC modified DaViTo in order to facilitate a value hierarchy deconstruction of a data 

set. This value hierarchy methodology is based upon multi attribute utility theory and allows 

users to define a structure which allows attributes to be weighted according to their relative 

importance. We describe the method employed in more detail below. 

Given a vast data set with attributes for various regions within the AFRICOM AOR, it is 

extremely difficult if not impossible to compare all attributes to one another in a meaningful and 

methodical manner. For this reason, we chose to utilize concepts from multi attribute utility 

theory in which comparisons are continually broken down into smaller and smaller chunks until 

the analyst must only compare a small subset of the overall data set wherein all elements are 

somehow related (Luce & Tukey, 1964). 
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For example, given the measures of population growth rate, HIV deaths and education 

expenditures, among others it is often too difficult to decide in a consistent manner how to 

weight the importance of each attribute.  However, if we allow our overall rating of stability for a 

region to be broken up into subcategories representing lines of effort such as ‘Medical’, 

‘Governance’ and others as needed, we can begin to partition our data set into smaller clusters 

which become more and more closely related as the subdivision process continues. 

We accomplish this partitioning by use of trees. The root node at the top of the tree 

represents stability. Stability can then be assigned any number of children. Those child nodes can 

then be broken up further and further as necessary until the analyst is left with only a small 

number of attributes as siblings whose relative importance can be determined more 

systematically. 

Once the structure of the value system tree has been determined, the analyst must then 

decide what the minimum and maximum thresholds for the data are. Using infant mortality as an 

example, when measuring a region for stability, we may want to compare the infant mortality 

rate to that or the United States. The United States has an infant mortality rate of roughly 0.6%, 

which is extremely low when compared to second and third world nations. It must then be 

determined, with regard to stability, what a threshold is such that an infant mortality rate below 

the threshold no longer contributes to the region’s stability. For the sake of this example we shall 

choose 6%. A similar decision must be made for the worst case value. Looking at data for Africa, 

we can see that no country in Africa has an infant mortality rate higher than roughly 11%. 

Therefore, an analyst may want choose this value as the worst case threshold. 

Once the best case and worst case thresholds are established for all of the attributes in the 

data set, the analyst then chooses weights for each node in the tree relative only to its siblings. 

Thus, we only compare medical attributes with medical attributes, and governance attributes with 

other governance attributes, and so forth. 

In the inner nodes of the tree, we compare between siblings as well. So, we need to 

choose the relative importance of medical stability to that of stability in governance. These 

broader categories are much easier to grasp with regard to relative importance than the more 

detailed measures taken from the data set. Once this has been completed for all nodes in the tree, 
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leaf nodes are attributes from the data set with best-case and worst-case values as well as a 

weight, all internal nodes are given weights, then the overall stability score for each region is 

computed using this fixed value system. 

The value system itself is developed before it is applied to the data set and can be saved 

to an xml file for reuse on new data, or similar data sets. The data is then evaluated against the 

value system hierarchy tree and can be saved to a Microsoft Excel Workbook file where each 

region is printed out on its own worksheet and each region’s worksheet has the structure of the 

tree preserved by noting the threshold values, parent node, and the evaluated value, by attribute. 

See Table 1 below for an example. 

 

Table 1.   Cameroon value system evaluation output. 

The capability to complete all of the actions required by users described above has been 

implemented in Java within DaViTo, and is available in the latest version of DaViTo, located 

here http://trac.nps.edu/davito. Also included at this link is a User’s Guide that describes the 

functionality of DaViTo and assists the end user in getting started. All of the actions are 

completed within an intuitive graphical user interface similar to most computer applications in 

use today. 
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SECTION 3. DEVELOPING THE DATA SOURCES 

3.1. FINDING THE DATA 

The amount of data that needs to be analyzed at the tactical level to support strategic 

decisions can be overwhelming. Combine the vast amounts of data with the changes to the 

operations plan that state that coalition forces need to focus on applying counterinsurgency lines 

of effort simultaneously, rather than sequentially, and current methods used to support decision 

analysis are no longer suitable. For commanders to conduct resource allocation across all of the 

LOE simultaneously by the most effective means possible, new methods for collecting, 

analyzing and displaying data are required. 

There is a growing recognition of the importance of data at all levels, from tactical to 

strategic levels, and increasing complexity for soldiers operating in full spectrum operations, 

beyond the COIN mission. New types of military engagements will require the Department of 

Defense to learn to access new data sets. For example, most recent Department of Defense policy 

and White House policy indicates data needs for topics that have been previously outside of the 

“comfort zone” for the U.S. Army. In collecting data for the framework, the team evaluated key 

policy guidance that has emerged from USG policy and Department of Defense doctrine, to 

include “Sustaining U.S. Global Leadership: Priorities for 21st Century Defense”  (January 

2012) indicating that the U.S. Army must be prepared to protect citizens and hand over security 

responsibilities to the HNSF. The data set includes points to consider for both overarching 

security sector and host nation armed forces, as in the recently published “The United States 

Army Operating Concept 2016-2028” (August 2010). The Department of Defense will be 

required to engage with host nation security forces in the prevention of mass atrocities as 

outlined in “Fact Sheet: A Comprehensive Strategy and New Tools to Prevent and Respond to 

Atrocities” (April 2012). Key concepts from these recent policies are included in the tool within 

the “Line of Effort” column, and in the Data Source section, the user is able to find key concepts 

that relate to these policies. For example, although it was not “Prevention of Mass Atrocity” is 

not included as a specific Line of Effort, concepts related to this foreign policy goal are included 

under the section titled “Establish Civil Security/Number of incidents of violence between 

people / groups of different communities.” Data to support this issue includes texts, including 



 12 

legal concepts related to prevention of mass atrocities is provided. Similarly, the tool allows the 

user to know that when looking at Prevention of Mass Atrocities, they should also consider the 

concept of “Responsibility to Protect” which is directly associated. In no way does this tool 

allow the user to instantly see what these concepts mean, but instead allows the user to know 

what data points and foundational research should be undertaken.   

Although this initiative has been in production mode/draft mode over this fiscal year, it 

has already proved to be useful to various data requestors.  For example, in support of the 

Protection of Civilians Working Group run out of the Peacekeeping and Special Operations 

Institute, the draft spread sheet allowed the Working Group to rapidly frame issues related to 

diverse topics, and allowed for the production of read-ahead data took less than five minutes to 

consolidate and send in an email, rather than an more extended research, analysis, and 

production effort. Time invested in advance to populate the tool paid dividends to the working 

group and prevented wasted time in searching for definitions of concepts and framing issues. For 

the purposes of the Protection of Civilians Working Group, the data provided is not in any way a 

complete guide, but rather starting points to help familiarize participants with key issues. 

Additionally, the data set has helped influence scenario development for two efforts thus 

far. In the past, data collection for scenarios has been a time consuming undertaking, and 

triangulating data to determine whether the data is reliable and usable for scenario development 

has been a challenge. In scenario development conferences, often participants will spot a specific 

issue, or data gap, and then a researcher would need to go and find data points to fill the gap. At 

the previous Africa related conference, it was as simple as using the “find” function in the 

spreadsheet to rapidly point the scenario team to appropriate data sources for issues ranging from 

United Nations involvement in the area, potential concerns with refugee settlement, USG 

Interagency participation, and a host of other issues.  The spreadsheet / data source tool allowed 

for definitive data on the wide range of issues, and allowed the team to avoid using opinion in 

lieu of research and analysis. 

In the second scenario development, the geographic area was outside of Africa, but the 

data sources found for the Africa specific effort were still of utility to quickly access data on 

global issues related to PMESII-PT. For example, refugee resettlement was also an issue in the 

second scenario and the data points listed for the AFRICOM spreadsheet led to information on 
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refugees in general and the organizations that are global responders. Although much of the tool 

would need to be adapted for areas outside of AFRICOM, a substantial number of the data points 

have applicability for other combatant commands.  

As the data collection project progressed, the team endeavored to include emerging USG 

policy along with established doctrine. For example, as the Counterinsurgency (COIN) Center at 

Ft. Leavenworth undertook the rewrite of FM 3-24, potential changes to the COIN doctrine, not 

yet published, were included in the tool, so as to ensure that once new doctrine is published, the 

tool will be relevant to any changes. Similarly, as the Counterinsurgency Center trained Brigade 

Combat Teams for deployment to Afghanistan, the Complex Operations Date Development 

Activity (CODDA) provided quick turn data responses on issues related to rule of law, 

governance, human rights, interagency collaboration and other issues. While still in draft form, 

the tool allowed the CODDA to provide direct responses to the Counterinsurgency Center to 

inform pre-deployment training for a BCTs deploying to an area outside of AFRICOM.  

Commanders sought out data on larger conceptual issues in the pre-deployment phase, for 

example, Rule of Law, but once on the ground, the shift might turn to needing to know what 

USG agencies “do” Rule of Law and what Non-Governmental Organizations facilitate these 

programs. The tool allows the data requestor to get a quick familiarization with complicated 

issues, and allows the user to quickly identify leaders on the issue. 

As a supplemental effort to this project, the project team did a data “deep dive” into 

available data sources in the Sahel region of Africa and more specifically in the country of 

Nigeria, as it represents a potential location for an upcoming IW TWG, and supports the “proof 

of principle” scenario methodology using survey data from the same region. The focus of this 

effort was finding strictly quantitative data, unlike some of the sources in the assessment 

framework, that can be used directly in future modeling or metric building works. Results of this 

effort are given in Appendix B with corresponding narrative as well as the data sets themselves 

in the form of outside links to related files. Also provided in Appendix C are the R scripts that 

were implemented for capturing and downloading the data. Only slight modifications to these 

scripts would be necessary in order to use them in order to find or download data sources from 

other areas of the world or similar websites. 
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3.2. GAP ANALYSIS 

In a perfect world, it would be possible to consult with one data source, preferably an 

easy to access website, to access a reliable and up-to-date database to find information. The 

reality of the situation is that for the majority of the data needed, a user needs to consult with a 

variety of sources, compare results from data pulled from those sources, and triangulate the data 

in order to ensure that it is correct based on three types of sources: SME input from U.S. 

government and interagency partners, literature, books, and journal articles, as well as 

international and non-governmental organizations. 

Literature: Books,  
Journal Articles;                               
Secondary Data

Data 
Triangulation

SME Input:         
Academics, USG 
Interagency Partner
Secondary Data

Intl. Organization,   
NGO, Policy Org. 
Reporting.  
Secondary  Data

Goal:  Identify three data points for each component of the Data Source section to allow 
user to draw data from multiple sources.  For complicated data requests, best to refer to 
three data points, rather than one “go to site” to collect data.

 

Figure 1.   Description of data sources 

Although the initial goal for the data collection phase was to find one key source to 

mitigate the data gap, the team endeavored to find multiple data points for each line of the 

spreadsheet. Unfortunately, there is not uniformity in the level of detail provided for each section 

of the spreadsheet. For some needed data points, there was plethora of data points available, 

ranging from United Nations/World Bank Data, US Government, policy organizations, and 

academic literature. For other needed data points, only one, sometimes questionable data point 

was provided. When data was limited or questionable, the tool provides a full description of why 
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the data was possibly of diminished value/questionable in value. For example, although 

Wikipedia is not a definitive site, there were quite a few sites that had consolidated data sets on 

issues ranging from African Military Strength to Child Soldiers. In no way should one Wikipedia 

site be used as a sole source for data, but in some cases, it was of utility to include. For the 

majority of the data points requested, at least one data point was found to shed insight onto the 

issue. In some cases, one single report served to close the data gap. For example, USAID, 

"Africa Regional Rule of Law Status Review" (2009) included in depth/detailed information for 

the “Establish Civil Control” section and the user of the tool can see which specific chapter to 

consult in that report to find the needed data.   

In more complicated data needs, numerous data points were included, so as to provide the 

user the opportunity to triangulate data. For example, an individual seeking data on Host Nation 

Security Forces will be provided with an open-source US Government link at the U.S. 

Department of State, on the Security Assistance landing page website. Additional data on Host 

Nation police inclusion in the Host Nation Security Forces is provided, via a contact at the U.S. 

Department of Justice. Additional data points for Host Nation Security Force include a text on 

Military Balance in Africa, a recently published report by the policy organization International 

Institute for Strategic Studies, and a link to SIPR NET that will provided data on integration of 

international forces with host nation forces. Additionally, two recent books on HNSF in the 

African context and one Wikipedia site are included. A distinct challenge for a data collector is 

that for most data needs, there is no single “go to” site or text that will provide the “right” 

answer. Instead, a skilled user of data will need to refer to multiple sites to collect relevant data 

for intended uses. 

Not all data responses in the spreadsheet are as richly populated; but instead, provide the 

user with a pathway to find the needed data. For example, in the “Describing the Operational 

Environment” section, a required data point was “Political, Religious, Tribal Motivations of a 

Group.” Due to the broadness of this data requirement, the information provided is more of a 

general description of how to find the data, not a specific report or URL. The response to this 

requirement leads the user to consult with the US Embassy in the country of interest and 

provides the website of where to track down the appropriate personnel at the US Embassy with 

data on the issue. Additional data for this section directs the user to consult congressionally 
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mandated reports like the Annual Report to Congress on International Religious Freedom and 

provides the specific website for access. Additional texts are recommended to arm the researcher 

with foundational understanding of politics, religion, and tribal issues and understand associated 

issues, such as the role of land tenure and how it intersects with political, religious and tribal 

issues. It was not possible to draw in connected issues on all of the Data Source sections, but 

when possible, related issues were included to help the user frame the issue. Most of the books 

and journal articles listed in the spreadsheet are available on Google books, thus enabling quick 

download from remote locations. When possible, the spreadsheet provides the precise chapter to 

consult for a specific issue, thus allowing the user to rapidly sift through the text, without having 

to read the entire book. 

The following are key data gaps that have not yet been completely mitigated: 

1. Local Labor (19): We’ve found a proxy source for this in literature related to use of 

Chinese labor in lieu of local labor, but nothing substantive that speaks to quantitative data on 

local labor usage and impacts on local economies, etc. We project that this is a gap that may not 

be filled with research state side, but rather would require in country interviews/on site 

evaluation. Nothing within USAID or UN sites thus far has indicated that local labor data is 

systematically collected.   

2. Insurgents / Violent Factions Operating in AO / Crime (20-28). Although we have 

found links for these data points, we would still consider this section to be a “gap.” We are still 

looking to develop a spreadsheet on the SIPR side that will house more authoritative links for 

these issues from intelligence agencies, rather than foundational literature. This is a gap, but just 

needs more time to be closed by reaching out to sources at DIA and CIA. We’ve already made 

contact with Defense Intelligence Officer Martin Kindl (gatekeeper for all of DIA’s AFRICOM 

threat data), but now need to drill down to the functional area and geographic area to fill gap. 

3. Number and type of armed incursions by non-state actors from neighboring states, Kill 

ratio between foreign fighters and security forces, Amount of funding flowing from foreign 

states or transnational actors to violent factions, % of population that feels that they can travel 

safely within the country, outside of their own tribal area (58-61). Thus far, finding accurate 

reporting on NIPR side has been challenging. Issues such as incursions, kill ratios, and 
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perceptions of safety have been hard to find and should be considered gaps. Additional research 

on SIPR may provide some resources, and combined with literature review, may partially 

mitigate this gap. On the issue of perceptions of safety, this may be an ongoing gap which would 

be difficult to fill from a research position in the US. Data collection for perceptions on safety in 

tribal area may be a data question for Human Terrain Systems or other data collector. At best, we 

may only be able to find anecdotal data on this issue. There have been some efforts from JTF-

HOA to implement the CIDNE database to track these issues and once this effort has been 

started, pulling data on these issues will be much easier. 

4. Attrition rates (23). We have found academic resources, but not as of yet found 

satisfactory quantitative data for this component. In the end, we may only be able to get to SME 

data, not more detailed attrition rates. 

5. Places of Religious Worship (36). Although we have been able to identify sources for 

discussion of major religions, actual locations of religious worship in the form of an eight digit 

grid is problematic.   

6. School and Universities (40). We still need to submit an RFD to assessment team at 

USAID. It is possible that we may be able to get some assessments, but probably won’t have a 

consolidated database of all educational facilities on continent without more time. 

7. Level of governmental involvement with the people (43), Degree of reliance by the 

people on informal governmental structures for support (44). Although some academic and 

international organizations are listed for data points, this section needs much more work.  

8. Influential figures publicly denounce acts of violence & other obstructionist behavior 

(51). We have found one USG data point and one academic source, but other data points are 

needed for this issue. 

9. Number and severity of attacks of key HN facilities (to include both critical HN and 

privately owned facilities) (56). We are at this time uncertain at this time how to fill this and are 

reaching out to others to determine best approach. This might be compiled by various USG 

sources from a qualitative perspective to track trends, but not sure will find data that is accurate 

for number and severity. 
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10. Level of participation of ex-combatants in the political process & civil society (76).  

Gap. This is indicated as a gap, but can be closed with additional research. Although this data 

project has been country agnostic to a certain extent, the ex-combatant issue will be very country 

specific. Still trying to conceptualize how to find and display this data.   

11. Recruitment rates vs. desertion rates (87), Identity groups are represented in the 

HNSF in the same proportion as they exist in the population as a whole (89), Locations of HNSF 

units (90), Ability to effectively plan, execute, and sustain operations (91), Number of 

autonomous HNSF operations and success rates. Thus far, the team has been unsuccessful in 

identifying data for these components and there is concern that accessing this data will be 

difficult if not impossible to access.  

12. Government taxation vs. faction taxation vs. illegal extortion (101). We may only be 

able to get foundational data (literature review) here, and not exact/detailed quantitative data. 

With more time we can close the gap more with SME/reports from Transparency International, 

etc. 

13. Perception among minority & majority identity groups of nepotism in the civil service 

(110). At present, this is still listed as a gap, due in part to the complexity of collecting data on 

this issue and will need additional time to at least partially mitigate with SME, literature review. 

14. Prohibited political parties as a % of total (113). Initial research will allow for 

identification of political parties, but we are having more difficulty accessing information on 

prohibited parties. 

15. New urban construction start rate (160). We are at the present time concerned that 

this data is not collected in a systematic way for most African countries.  Will continue to look 

for data, but may only be able to find proxy sources. 

For some data requests, there is no simple way to access the data. In these cases the 

spreadsheet guides the user through a potential path to find needed data. For example, there is 

not a specific database or site to consult for the presence of International Organizations in Africa. 

Instead, the response leads the user through various approaches to collect the data, from a mostly  

top down data collection methodology of checking United Nation umbrella sites, indicates other 

International and Regional Organizations with potential operations on the continent, and 
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provides recommended texts describing the mandates, strengths, and weaknesses of those 

entities. In sum, providing only information about the presence of the International Organization 

may not be effective and inclusion of academic studies of the effectiveness of the organization in 

the country will allow the researcher to compile a more robust response. 
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SECTION 4. SCENARIO METHODOLOGY & DEVELOPMENT 

4.1 INTRODUCTION 

The objective of this part of this effort is to develop a methodology and build a proof of 

principle scenario in a specific region or country in the AFRICOM AOR for use in future IW 

TWG’s using Factor Analysis and Generalized Linear Models. This section will describe the 

survey data that was used, the recoding/imputation and factor analysis, and the subsequent linear 

and multiple logistic regression models that will allow us to predict future population Issue 

Stance Scores as well as Observed, Attitudes, and Behaviors. Additionally, a small “proof of 

principle” scenario will demonstrate how these models can be used to predict future population 

responses. 

4.2 THE SURVEY DATA 

This part of the project is based on survey data collected in six countries in the Western 

Trans-Sahel region of Africa. The surveys have been conducted over the past four years, though 

not every country was surveyed in each of the available years. The analysis for this portion of the 

effort focuses on the survey conducted in the country of Nigeria, during the year 2010. This 

particular country was chosen as it represents a possible and likely location for the upcoming 

Irregular Warfare Tactical Wargame scenario lead by the TRADOC Analysis Center – White 

Sands Missile Range.  

These surveys were initially sponsored by AFRICOM, and conducted by a private 

contractor operating in the region with no discernible affiliation to the U. S. military or the U.S. 

government. AFRICOM’s objective in conducting this project was to better ascertain how their 

actions affect the daily lives of the indigenous populations, while also looking to identify areas of 

the data that can be used when determining future courses of actions or allocations of resources 

(Kulzy, 2012). 

The survey instrument for 2010 consists of 255 questions and 3,770 respondents for the 

country of Nigeria. However, of these questions, some are specific to only one or two countries. 

There are also questions to which a Likert scale value cannot be associated, so they are coded as 

nominal values. There are also a number of questions that were conditional on responses to other 
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questions. These conditional questions are, for example, specific to only one type of religion or 

are only answered if a previous question was affirmatively answered. These types of questions 

were omitted from the analyses, as they were deemed to bias the responses as they applied to 

only a subset of the population surveyed (Kulzy, 2012). 

4.3 RECODING AND DATA IMPUTATION 

Table 2 specifies the particular survey questions that were used in the analysis. All 

questions in the survey instrument that were asked of all respondents were included in the 

analysis. Conditional questions, based on skip questions, as discussed above, were not used in 

the analysis. 

 

Source of Information Q5 

Quality of Life Q6 – Q10  

View of foreign countries Q12, Q14, Q16, Q17, Q21 – Q23 

Views of Nigeria Q25 

Trust and Religion Q26 – Q34, Q36, Q37 

Governance, Politics, and Security Q40, Q45, Q48 – Q50, Q52 

Acts of Violence Q56 – Q59 

U.S. Actions Q60, Q62 

Demographics D12 – D17, D21 – D24, D26 

Table 2.   Related questions specific to the analysis 

 

Crucial to any quantitative modeling of survey data is the appropriate preparation of the 

data. The first step in this process is re-coding the responses from the original Likert scale 

responses to numeric values. Various Likert scales were used in the survey and they differed 

both in terms of qualitative scales and response ranges. For example, a four-point Likert scale 

accounted for 66% of the total number of questions. Typically the response scales were in the 
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form of “always positive,” “somewhat positive,” “somewhat negative” and “always negative,” or 

some other similar positive to negative range. The survey also had questions with five-point 

Likert scale responses as well as binary responses. Recoding was done using the CAR package 

with the R statistical software program. Before the data was re-coded, it was important to 

determine how the response would be viewed. The factors used in this analysis were re-coded in 

a positive or negative direction depending on how a U.S. analyst would interpret the numeric 

variables loaded onto the factors. Consistency in the direction of the recoded variables does ease 

the burden of interpretation once the factors have been defined and the linear models fit. In 

general if a response was assumed to be positive to a U.S. analyst, then the response was given a 

positive value, and if it was assumed to be negative, then it was given a negative value. Numeric 

re-coding values range from a +2 to a -2. If the range was a four-point Likert scale, then the 

extreme positive and negative answers were given a +2 and -2 respectively. The moderate 

positive and negative were given a +1 and -1 respectively. The re-coding values for a fivepoint 

Likert scale is similar to a four point one, but with a 0 coded for neutral type responses such as 

“stayed the same.” Three-point Likert scales have a +2 and -2 for extremes and 0 coded to 

neutral responses, but there are no moderate values. There were also questions that offered 

binary responses, such as a general “Oppose” or “Support,” and a more formal choice of 

response as “Shari’ah reduces crime in society” or “Shari’ah does not affect the amount of crime 

in society.” These types of questions were given values of -2 or 2 (Kulzy, 2012). 

The “Don’t know” and “No response” responses in this data were treated as unknown 

values that needed to be imputed. This is in contrast to the typical solution for handling missing 

data, which is to remove the associated entire observation from the data. This approach is often 

referred to as casewise deletion. In terms of survey analysis, casewise deletion means that if a 

respondent failed to respond to one question, then all of the rest of his or her information from 

the other 141 questions would be removed. For this data set, if casewise deletion was used in 

order to be able to first conduct a factor analysis and subsequently fit regression models, 2,240 of 

the 3,770 Nigerian observations (60%) would be removed from analysis. This is in spite of the 

fact that each question only had a very small percent of missing responses. Thus, imputation is 

crucial to this survey because imputing only 6% -8% of the data saves 60-72% of it for analysis. 

Missing data was handled using nearest neighbor hot-deck imputation, a more sophisticated 
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method than simple mean imputation, and was implemented using the state or region as a 

matching variable in order to account for spatial variation in the data (Kulzy, 2012). The hot-

deck imputation method used in this effort is based on the RANDwNND.hotdeck function within 

StatMatch package of R. The imputation for the missing values, to include “Don’t knows” and 

“No Response” responses, was done using the variables: region/state (the states of the country), 

“d5a” (religion), “d0” (gender), “urban/rural” (live in urban or rural area of state). The 

RANDwNND.hotdeck function initially subsets the data based on specific “donor class” 

variables. For this research, the donor class variable is the “state” variable. Basing the donor 

class on geographic state ensures that geographic heterogeneity is accounted for in the 

imputation. Within each state, then, the data is subset into two groups: the receivers and the 

donors. The receivers are those respondents who are missing the response to a particular question 

and the donors are those respondents who have answered the same particular question. For each 

receiver, a donor is then identified that is closest to the receiver in terms of Manhattan distance 

based on his or her religion, gender, and location (urban/rural). If there is more than one 

“closest” donor, then ”one is picked at random” from among the tied group of the closest 

matches (D’Orazio, 2011). 

Imputing all of the ”Don’t know” responses could have an impact on a few questions that 

loaded onto a factor with a minimal significant value of 0.4. Those questions loading as a 0.4 in 

one imputation would be considered significant. However, if the process was to be repeated, 

there is a chance that a minimal, loaded value question may now fall below the 0.4 threshold and 

be removed from the factor. It was determined to recode the ”Don’t know” responses in a 

manner that minimized the volatility of these few questions which rest on the cusp of the 0.4 

threshold. It was assumed that a “Don’t know” in the three and five point Likert scales would be 

equivalent to a “No Response” because a neutral, valued at zero, response was offered. 

Therefore, three and five point Likert scales of “Don’t know” were imputed in the same manner 

as a “No Response.” A more difficult question is how to best analyze “Don’t know” responses in 

a two- and four-point Likert scales since these types of scales do not offer an explicit neutral 

response option. It is reasonable to assume that a “Don’t know” response to a question with only 

“Strongly agree”, “Agree,” “Disagree,” and “Strongly disagree” could, in fact, be using the 

“Don’t know” response option to express neutrality, particularly when there was also a “No 
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response” option. Thus, in these cases a “Don’t know” response was re-coded to a value of 0, a 

choice which seems conservative in the sense that without it imputing these responses would 

result in a potentially neutral person being given a positive or negative response (Kulzy, 2012). 

This assumption addresses over 60% of the missing data that would have otherwise required 

imputation. Roughly 6-8% of Nigeria’s questions did not have a clear response, and eight of 

these questions are asked on either a two- or four-point Likert scale for Nigeria. Since there is no 

clear and definitive interpretation of the “Don’t know” responses for these questions, and 

because of the large number of these questions, a closer analysis was performed. It is plausible to 

believe that without an option to be neutral, as in two- and four-point Likert scales, a logical 

interpretation of “Don’t know” is neutral which would then result in re-coding it to zero. If this 

were to be the case then these questions would not be explicitly imputed. However, this is not 

necessarily true for other types of questions (Kulzy, 2012). 

4.4 FACTOR ANALYSIS 

One of the major challenges with large surveys is reducing the mass of data into useful 

information. Another challenge with surveys aimed at understanding the human terrain, 

particularly when applied to irregular warfare, is that the population characteristics of interest 

may not be directly measured via single questions. Factor analysis helps address both of these 

issues. 

Critics of the factor analysis argue that its inherent subjectivity and flexibility allows 

analysts to manipulate the output. The non-unique solution of the factor loadings is often 

particular focus of this criticism. However, all mathematical and statistical models can be 

manipulated, and most involve making numerous subjective choices (choice of variables, model 

parameterization, etc). In this sense, factor analysis is no different. As with those methods, and 

research in general, it is incumbent on the researcher to ensure his or her results are not sensitive 

to, or dependent on, modeling choices. That said, remember that the goal of factor analysis is to 

create factors that are both statistically and substantively meaningful, and the latter implies -- 

perhaps requires -- a degree of subjectivity. 

Factor analysis is a hybrid of social and statistical science. First conceived in the early 

1900s, the goal was multivariate data reduction, but data reduction of a very specific type.  
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Essentially the idea is to explain the correlation structure observed in p dimensions via a linear 

combination of r factors, where the number of factors is smaller than the number of observed 

variables, and where the factors achieve both  “statistical simplicity and scientific 

meaningfulness'' (Harman, 1976).   

Figure 2 illustrates the idea of factor analysis with six observed variables (i.e., survey 

question responses) that can be effectively summarized in terms of two latent variables (factors).  

Note that the survey question responses are observed with error (denoted by the εi terms) and the 

question responses are weighted linear combinations of the factors (where the weights are the 

λijs). What factor analysis does is model the p observed variables as linear combinations of r 

factors, where the analyst has to pre-specify r, such that the model covariance matrix closely 

matches the sample covariance matrix of the observed variables. 

 

Figure 2.   An illustrative example of factor analysis with six observed variables that can be 
effectively summarized in terms of two latent variables (factors). 

An alternative to factor analysis is principal components which uses orthogonal 

transformations to convert a set of possibly correlated variables into a reduced set of uncorrelated 

variables that capture most of the variation in the original data. The transformation is defined so 

that the first principal component accounts for as much of the variability in the data as possible, 

and each succeeding component has the highest variance possible under the constraint that it be 

orthogonal to the preceding component or components. A principal components analysis, while 
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useful for efficiently summarizing data, does not necessarily result in factors with scientifically 

meaningful interpretations.    

In contrast, factor analysis is specifically designed to look for meaningful commonality in 

a set of variables (DeCoster, 1998). There are two types of factor analysis: exploratory factor 

analysis (EFA) and confirmatory factor analysis (CFA). EFA looks to explore the data to find an 

acceptable set of factors.  In this sense, it is much like exploratory data analysis. The goal is not 

so much to formally test hypotheses as it is to discover likely factors that will account for at least 

50 percent of the common variation in the observed factors. CFA, on the other hand, begins with 

a theory or hypothesis about how the factors should be constructed and seeks to test whether the 

hypothesized structure adequately fits the observed data.  

4.4.1 The Factor Analysis Model 

Consider a survey consisting of p questions given to n respondents, where respondent i's 

responses are denoted 𝒚𝑖 = �𝑦𝑖1, … ,𝑦𝑖𝑝�. From the data, a sample covariance matrix S is 

calculated in the usual way for the set of centered variables,  

𝒙𝑖 ≜ �𝑦𝑖1 − 𝑦�1, … ,𝑦𝑖𝑝 − 𝑦�𝑝�, 

where 𝑦�𝑗 = 1
𝑛
∑ 𝑦𝑖𝑗𝑛
𝑖=1 . That is, the j(k)th entry of S is calculated as 𝑠𝑗𝑘 = 1

𝑛−1
∑ 𝑥𝑖𝑗𝑥𝑖𝑘𝑛
𝑖=1 , 

𝑗 ∈ {1,2, … ,𝑝} and 𝑘 ∈ {1,2, … ,𝑝}. 

The fundamental assumption of factor analysis is that, for some r < p, each of the p 

centered variables ( 𝑿 = �𝑋1, … ,𝑋𝑝�) can be expressed as the sum of r common factors (𝑭 =

{𝐹1, … ,𝐹𝑟}) multiplied by their loadings (𝜆𝑖1, … , 𝜆𝑖𝑟) plus a unique factor (𝑬 = �𝜀1, … , 𝜀𝑝�) 

multiplied by its associated loading (𝜓1, … ,𝜓𝑝), 

𝑋1 ≜ 𝑌1 − 𝜇1 = 𝜆11𝐹1 + 𝜆12𝐹2 + ⋯+ 𝜆1𝑟𝐹𝑟 + 𝜓1𝜀1 

𝑋2 ≜ 𝑌2 − 𝜇2 = 𝜆21𝐹1 + 𝜆22𝐹2 + ⋯+ 𝜆2𝑟𝐹𝑟 + 𝜓2𝜀2 

⋮ 

𝑋𝑝 ≜ 𝑌𝑝 − 𝜇𝑝 = 𝜆𝑝1𝐹1 + 𝜆𝑝2𝐹2 + ⋯+ 𝜆𝑝𝑟𝐹𝑟 + 𝜓𝑝𝜀𝑝                   (1) 
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where 𝜇𝑗 = 𝔼(𝑌𝑗). Now, while the above formulation looks similar in many respects to a series 

of linear models, note that everything on the right-hand side of the p equations is unobserved. In 

spite of that, the goal is to estimate the loadings from the data so that the modeled covariance 

matrix R is “close to” the observed sample covariance matrix S.   

Using matrix notation, Equation (1) can be expressed compactly as 

𝑿 = 𝜦𝑭 + 𝜳𝑬,                                                             (2) 

where Λ is the matrix of the loadings for the common factors of dimension p × r and Ψ is a 

matrix of dimension p × p with 𝜓1, … ,𝜓𝑝 on the diagonal and all off diagonal entries zero.  

Assuming 𝔼(𝑬) = 𝟎, we get to the whole point in fitting the factor analysis model, which is that 

we can use the estimated common factor loadings 𝜦� to express the factors in terms of their 

constituent parts: 

𝔼(𝑭) = 𝜦�−1𝔼(𝑿).                                                          (3) 

One of the most common uses of exploratory factor analysis is to “determine what sets of 

items hang together in a questionnaire” (DeCoster, 1998). Thus, assuming Equation 1 is an 

appropriate model, via Equation 3 we can determine which of the survey questions are most 

related and, as desired, use them to estimate the underlying latent factor for any respondent as a 

linear combination of their responses to the survey questions. Furthermore, if the scientific 

meaningfulness goal is achieved, the latent variables will have useful and interpretable meanings 

that provide additional insight into the characteristics of the populations being studied. 

Of course, at this point it should be evident that there will be no unique solution to this 

problem.  There are simply too many degrees of freedom in the problem formulation and, even 

after some assumptions to make the problem solvable, there will still be an infinite set of 

solutions.  This, along with the fact that the choice of solution is subjective, is one of the frequent 

criticisms of factor analysis.  Nonetheless, as we will show, we have found the results to be quite 

informative and useful in our survey analyses, and there are ways to minimize the number of 

subjective modeling choices that must be made. There are three critical steps in fitting a factor 

analysis model: (1) Determining the number of factors, (2) fitting the model in order to estimate 
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the common factor loadings, and (3) rotating the loadings to find the preferred solution.  We 

discuss each of these in turn. 

4.4.2 Determining the Number of Factors 

To conduct factor analysis, one must pre-specify the number of factors r to fit. In so 

doing, it is crucial not to underestimate or overestimate the number of factors. If too few factors 

are chosen then the fitted factors become overloaded with irrelevant variables. On the other hand, 

with an excessive number factors the variables may be spread out too much over the fitted 

factors. In either case, the result is likely to be that meaningful factors are never properly 

revealed. 

This seems like a catch-22: To determine the correct factors, one must first know how 

many factors there are. However, over the years a number of solutions have been proposed, some 

that work better than others. 

One early solution is the Kaiser rule which stipulates that the number of factors used in 

the model should equal the number of eigenvalues for the original data matrix that are greater 

than one. Another is to use a Scree plot to graph successive eigenvalues versus the number of 

factors and then setting r to the number of factors where the plotted line visually levels out 

(indicating that the remaining factors have little explanatory power). 

The difficulty with the Kaiser rule and the Scree plot is they are heuristics. The Kaiser 

rule was designed to help the analyst of the early- to mid-1900s get “into the ballpark” with 

respect to an acceptable number of factors, but then the analyst was supposed to further refine 

the acceptable number of factors through trial and error. The Scree plot is also a heuristic 

because it allows for subjectivity in interpreting the plotted line where, to determine the number 

of factors, the analyst must visually determine when the line in the Scree plot levels out. 

An alternative to these methods, which only became feasible with the widespread 

availability of significant computing power, is parallel analysis. Parallel analysis involves the 

construction of multiple correlation matrices from simulated data, where the average eigenvalues 

from the simulated correlation matrices are then compared to the eigenvalues from the real data 

correlation matrix.  The idea of parallel analysis is that factors derived from the real data should 
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have larger eigenvalues than equivalent factors derived from repeatedly resampled or simulated 

data of the same sample size and number of variables.  Then r is set to the number of factors in 

the actual data that are greater than the average of the equivalent simulated data factor 

eigenvalues (Hayton, Allen, & Scarpello, 2004). 

4.4.3 Fitting the Model 

Given that by definition 𝔼(𝑿) = 𝟎, and assuming that the common factors are 

independent of the unique factors, it is straightforward to show that the covariance matrix for X 

from Equation 2 is  

𝑹 = 𝜦𝑹𝑭𝜦′ + 𝜳2,                                                            (4) 

where RF is the covariance matrix of the factors (Mulaik, 2009). Further assuming that 𝔼(𝑭) = 0 

and 𝑐𝑜𝑣(𝑿) = 𝑰, where the former condition follows because the factors can always be rescaled 

and the latter because we assume the factors are independent, Equation 4 simplifies to  

𝑹 = 𝜦𝜦′ + 𝜳2.                                                               (5) 

Then from Equation 5, Λ and Ψ are estimated via maximum likelihood. 

Note that the maximum likelihood estimators (MLEs) are not analytically derivable and 

must be solved for numerically using an iterative approach.  Under the assumption that F and E 

are jointly normally distributed, the calculations essentially follow the usual estimation methods 

with an additional uniqueness condition added because of the indeterminacy of the factor 

analysis model. 

4.4.4 Choosing the Preferred Rotation 

Maximum likelihood estimation results in a non-unique solution for how the variables 

load onto the factors. That is, for any estimated common factor loading matrix 𝜦� there are 

infinitely many other matrices that will fit the observed sample covariance matrix S equally well 

since 

𝜦�𝑭 = 𝜦�𝑻𝑻−1𝑭 = 𝜦∗𝑭∗,     (6)  

where 𝜦∗ = 𝜦�𝑻 and 𝑭∗ = 𝑻−1𝑭 for some transformation matrix T. 



 31 

Thus, after an initial solution is found, the final step in factor analysis is to rotate the 

variables to simplify their factor loadings. The rotation process is critical to factor analysis 

because it allows the analyst to identify the desired factor constructs, usually in terms of a simple 

structure of substantively interesting variables. However, this procedure is susceptible to 

criticism because all rotations are mathematically equivalent and thus the final choice is 

subjective. 

There are two main types of rotation: (1) oblique, and (2) orthogonal. Orthogonal rotation 

is most commonly associated with what is called the “varimax” method, and oblique rotations 

are most commonly associated with what is called the “promax” method. The distinction 

between the two rotations is whether the factors are assumed to be correlated or not; orthogonal 

rotations are uncorrelated while oblique rotations may be correlated.   

Kline says the most accepted method for creating factors with simple structure is varimax 

(Kline, 1994). On the other hand, the oblique method is recommended by Costello & Osborne 

because it can account for both correlated and uncorrelated factors (Costello & Osborne, 2005). 

We used the varimax rotation on our survey data and found it to work well. As defined in 

Johnson & Wichern, the varimax procedure finds an orthogonal transformation matrix T that 

maximizes 

𝑉 = ∑ �∑ �̃�𝑖𝑗4 −
1
𝑝
�∑ �̃�𝑖𝑗2

𝑝
𝑖=1 �

2𝑝
𝑖=1 �𝑟

𝑗=1 ,     (7) 

where �̃�𝑖𝑗 = �̂�𝑖𝑗/�∑ �̂�𝑖𝑗2𝑟
𝑗=1  (Johnson & Wichern, 2002). Equation 7 is akin to calculating the 

sum of the variances of the factor loadings across the r factors. What varimax does is find the 

rotation that makes the high loadings as high as possible while simultaneously making the low 

loadings as low as possible on each factor. 

4.4.5 Factor Analysis of the 2010 Nigeria Survey Data 

As mentioned in Section 4.2, the Nigeria survey was fielded in 2010 to 3,770 

respondents. A sample of sufficient size is an important consideration since the sample 

covariance matrix S is an estimate of some underlying true covariance matrix Σ. That is, since 

factor analysis focuses only on the sample covariance matrix, it is important that S is in fact a 
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good estimate of Σ in order to ensure the resulting factors represent underlying features of the 

population and not the noise or other artifacts of the sample. 

The factor analysis models were fit using the R statistical package. In particular, the 

factanal function in the base package was used to fit the factor analysis model and rotate the 

loadings to get the final solution. And, we used the fa.parallel of the R psych package to do the 

parallel analyses (Revelle, 2011). 

Prior to fitting the factor analysis models, we first cleaned and coded the data, and then 

we imputed a small number of missing values in order to prepare the data as described 

previously in detail in Section 4.3. The most important point to make here is that factor analysis 

can only be done with complete data and thus imputation is a critical step to complete prior to 

doing factor analysis.  For our data, approximately six percent of the data was missing (due, for 

example, to respondents refusing or failing to answer one or more questions), but they were 

spread throughout the data set.  Thus, if we had only used complete records, we would have 

eliminated 60 percent of the respondents.  Imputation allowed us to use all the data and 

subsequent sensitivity analyses demonstrated that our imputation assumptions had no practical 

effect on the factor analysis results. 

Returning to factor analysis, as discussed in Section 4.4.2, we first used parallel analysis 

to determine r, the number of factors.  Figure 3 shows the results from fa.parallel for Nigeria, 

where the eigenvalues for 27 factors were greater than those from the simulated data (the blue 

line is greater than the dashed red line), so we set r = 27. Sensitivity analysis using other values 

of r subsequently confirmed that r = 27 was indeed appropriate. In the end, however, we only 

used 26 factors, as the last one contained low factor loadings, contained only two questions that 

were also repeated in another factor, and was therefore not used in this analysis. Of note, also is 

the fact that for this research, variables with loadings between 0.4 and -0.4 were removed. 



 33 

 

Figure 3.   Parallel analysis where the eigenvalues for 27 factors were greater than those from the 
simulated data (the blue line is greater than the dashed red line). 

The list of the factors and the questions that load onto each is given below in Figure 4. Each 

factor name was chosen subjectively based on the content of the questions that loaded onto each 

particular factor. These 26 factors, in addition to 4 other survey questions that were not used in 

the factor analysis, will become the variables used in the next part of the project where we build 

regression models in order to predict future population issue stance scores and observed attitudes 

and behaviors. 

 The final step in this factor analysis is to compute a factor score for each respondent. This 

is a necessary step if we wish to conduct further analysis with the factors or to use them in any 

kind of model building. The score for a given factor is simply the linear combination of each 

measure or question, weighted by the corresponding factor loading (DeCoster, 1998). We can 

further refine this by rescaling the resulting factor score by dividing by the column (factor score) 

sums, thereby obtaining a factor score of between -2 and 2, the same as our recoded scale as 

described in Section 4.3. 
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Figure 4.   List of factors and factor names 

4.5 PREDICTIVE MODELS 

We now move on to use what we have done with the data through the recoding, 

imputation, and factor analysis to building regression models that will enable us to predict a 

population’s response in light of future events within the context of the TRAC IW TWG. 

In short, the IW TWG seeks to stimulate a player such that he/she are forced to make the 

“best” decisions and develop appropriate courses of action in a given location and scenario. In 

order to do this, the game model must be able to provide feedback from the local populace to the 

player on how player decisions effect population perceptions. The subsequent linear and 

multinomial logistic regression models that predict population responses were built specifically 

with this functionality in mind, to stimulate player action and decision making in a simpler, and 

more traceable way than is currently being used with TRAC’s Cultural Geography model. 

Factor Name Factor No.
Shari'a Law X1 q32a q32b q32c q32d q32e q33 q57

U.S. Assistance to Nigeria X2 q21a q21b q21c q21d q21e q21f q21g q21h
Chinese Assistance to Nigeria X3 q22a q22b q22c q22d q22e q22g q22h

Social & Essential Services X4 q8edu q8hea q8wat q9edu q9hea q9wat
Trust in Government Agencies X5 q49na q49pp q49af q49cj q49lp q49lg

External Security X6 q23b q23c q23d q23e q23f
General Trust X7 q26a q26b q26c q26d q26e

Non-Western Countries X8 q12ni q12ir q16so q16li q16sa
Local & National Freedom X9 q48a q48b q48c q48d q48e q48f

Democracy X10 q40 q42 q44 q45
Other's Values X11 q17sa q17fr q17ch q17ir q17us

Daily Life Acceptance X12 q27a q27b q29a q29b
Use of Violence X13 q25a q25b q25c

Terrorism Enablers X14 q23a q59d
Family & Friends X15 q27c q27d q29c q29d

Civic Duty X16 d24a d24b
Attacks on U.S. X17 q58a q58b q58c

Discussion of U.S. X18 q62a q62b q62c
Electricity X19 q8ele q9ele

Western Countries X20 q12uk q12fr q14usa
Trust in Policy Makers X21 q49pr q49pm q50

Religious Freedom in the West X22 q37c q37d
Religious Intolerance X23 q36a q36b

Civility X24 q28 q30
Policy and Law X25 q31a q31b

Roads X26 q8roa q9roa

Questions
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4.5.1 Predicting Issue Stance Scores Using Linear Regression 

The first step in building linear regression models used to predict future issue stance 

scores and the subsequent OABs (though using different model), is to determine what issues are 

most important to the population. That is, of all of the factors that we identified during the factor 

analysis, which ones matter most to the people as well as providing the most predictive power? 

To do this, we take the 26 factors and 4 other survey questions (q6, q7, q10, d23) that were not 

used in the factor analysis (this will avoid multi-colinearity problems), and regress each against 

all the other ones, thereby creating 30 linear regression models all with 29 predictor variables (no 

interaction terms were used). In order to create the simplest predictive model that minimizes 

over-fitting, we use a stepwise deletion process, specifically the stepAIC function in R. This 

function, in order to find the statistically significant predictor variables, deletes the term with the 

highest p-value (greater than 0.05), re-runs the model, and continues this process until all the 

remaining variables have p-values that are less than 0.05. The 30 models, now simplified with 

only significant predictor terms remaining, are then compared based on their adjusted R2 value. 

Those models with an adjusted R2 of greater than 0.4, and that do not violate any of the usual 

linear regression modeling assumptions, are chosen as the “best” ones, and in this context 

represent the key issues that matter most to the population as well as those with the most 

predictive influence. Each of the four factors X2, X4, X5, and X10, also account for a large 

proportion of the total variance, again indicating that these four are the key issues to the 

population. We get four that meet these criteria: models with X2, “U.S. Assistance to Nigeria”, 

X4, “Social & Essential Services”, X5, “Trust in Government Agencies”, and X10, 

“Democracy”, as the response variables. Since we don’t want any one of the four response 

variables being predictor variables in one of the other four’s regression equation, we re-build 

each of the four models, taking out the other three response variables if they were present as 

predictors. Our four issue stance / linear regression equations are then given by: 

𝑋2 = −0.19 + 0.03𝑋1 + 0.38𝑋3 + 0.07𝑋6 − 0.08𝑋8 + 0.05𝑋9 + 0.09𝑋14 + 0.03𝑋17 + 0.12𝑋18 + 0.24𝑋20
+ 0.08𝑋21 + 0.03𝑋22 + 0.02𝑋23 + 0.03𝑋26 + 0.05𝑞7 
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𝑋4 = 0.09 + 0.09𝑋3 − 0.04𝑋6 − 0.05𝑋13 + 0.09𝑋14 − 0.04𝑋15 − 0.01𝑋16 − 0.02𝑋17 + 0.11𝑋19 + 0.04𝑋20
+ 0.04𝑋21 + 0.04𝑋22 − 0.02𝑋23 + 0.12𝑋24 + 0.05𝑋25 + 0.3𝑋26 + 0.05𝑑23 + 0.09𝑞6 + 0.13𝑞7
+ 0.02𝑞10 

𝑋5 = −0.51 − 0.03𝑋1 + 0.1𝑋3 + 0.16𝑋7 + 0.03𝑋8 + 0.16𝑋9 + 0.02𝑋11 + 0.08𝑋12 − 0.04𝑋14 − 0.02𝑋15
+ 0.02𝑋16 + 0.05𝑋18 + 0.06𝑋19 − 0.03𝑋20 + 0.35𝑋21 − 0.02𝑋22 − 0.04𝑋23 − 0.03𝑋25
+ 0.05𝑋26 − 0.02𝑞6 + 0.07𝑞7 + 0.02𝑞10 

𝑋10 = −0.06 + 0.03𝑋3 + 0.09𝑋7 − 0.13𝑋8 + 0.18𝑋9 + 0.1𝑋11 − 0.06𝑋13 − 0.04𝑋14 + 0.04𝑋15 + 0.05𝑋16
− 0.03𝑋20 + 0.31𝑋21 + 0.02𝑋22 − 0.03𝑋23 + 0.05𝑋24 + 0.05𝑋26 + 0.05𝑑23 + 0.02𝑞6 + 0.2𝑞7
+ 0.05𝑞10 

These regression equations will now allow us to predict future issue stance scores, which 

will be demonstrated through a small use case in Section 4.5.3. 

4.5.2 Predicting Future OABs Using Multinomial Logistic Regression 

In the previous section, we showed how a linear regression model can be used to predict 

future issue stance scores from a given population. We now move on to the next step, predicting 

future observed attitudes and behaviors (OABs) using a different type a model, the multinomial 

logistic regression. 

A simple logistic regression model can be used in situations where the response variable 

is dichotomous or binary, that is, the response measurement for each subject is a “success” or 

“failure”. This model type can be modified to handle cases where the outcome variable is 

nominal with more than two levels (Hosmer & Lemeshow, 2000). For instance, we could employ 

a multinomial logistic regression if we wanted to model the choice of a meal plan from among 

three offered to students at a university. If the meal plans are represented by “A”, “B”, and “C”, 

we could model, based on whatever predictor variables we have chosen, the probability of a 

student choosing one of the three meal plans as a function of those covariates. We must, 

however, pay attention to the scale that is used, as different methods can be employed if the scale 

is nominal or ordinal (Hosmer & Lemeshow, 2000). For our purposes here, we will use a 

nominal scale. To develop the model, assume we have p covariates and a constant term, denoted 

by the vector x, of length p + 1. Since we have three outcome variables in our meal plan 
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example, we will need two logit functions, and we will compare the baseline outcome, meal plan 

“A” (or P(Y = 0)), against the others. We denote the two logit functions as: 

𝑔1(𝐱) = 𝑙𝑛 �
𝑃(𝑌 = 1|𝐱)
𝑃(𝑌 = 0|𝐱)

� = 𝛽10 + 𝛽11𝑥1 + 𝛽12𝑥2 + ⋯+ 𝛽1𝑝𝑥𝑝 , and 

𝑔2(𝐱) = 𝑙𝑛 �
𝑃(𝑌 = 2|𝐱)
𝑃(𝑌 = 0|𝐱)

� = 𝛽20 + 𝛽21𝑥1 + 𝛽22𝑥2 + ⋯+ 𝛽2𝑝𝑥𝑝 . 

Notice that there are separate parameters for each logit function, meaning that the effects vary 

according to the response category paired with the baseline (Agresti, 1996). The conditional 

probabilities of each of the three outcome variables given x are then:   

𝑃(𝑌 = 0|𝐱) =
1

1 + 𝑒𝑔1(𝐱) + 𝑒𝑔2(𝐱) , 

𝑃(𝑌 = 1|𝐱) =
𝑒𝑔1(𝐱)

1 + 𝑒𝑔1(𝐱) + 𝑒𝑔2(𝐱)  , and 

𝑃(𝑌 = 2|𝐱) =
𝑒𝑔2(𝐱)

1 + 𝑒𝑔1(𝐱) + 𝑒𝑔2(𝐱) . 

A general expression for the conditional probability in an n category model is: 

𝑃(𝑌 = 𝑗|𝐱) =
𝑒𝑔𝑗(𝐱)

∑ 𝑒𝑔𝑘(𝐱)𝑛−1
𝑘=0

 . 

We can estimate the value of the parameters by first constructing a likelihood function for a 

sample of n independent observations, given by: 

𝑙(𝜷) = ∏ [𝜋0(𝒙𝑖)𝑦0𝑖𝜋1(𝒙𝑖)𝑦1𝑖𝜋2(𝒙𝑖)𝑦2𝑖]𝑛
𝑖=1  . 

By taking the log of this likelihood function we get: 

𝐿(𝜷) = ∑ 𝑦1𝑖𝑔1(𝒙𝑖) + 𝑦2𝑖𝑔2(𝒙𝑖) − 𝑙𝑛�1 + 𝑒𝑔1(𝒙𝑖) + 𝑒𝑔2(𝒙𝑖)�𝑛
𝑖=1  . 

The likelihood equations are constructed by taking the first partial derivatives of L(β) with 

respect to each of the unknown parameters. The general form of these equations is: 

𝜕𝐿(𝜷)
𝜕𝜷𝑗𝑘

= ∑ 𝒙𝑘𝑖�𝑦𝑗𝑖 − 𝜋𝑗𝑖�𝑛
𝑖=1 . 
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The maximum likelihood estimator is then obtained by setting these likelihood equations equal 

to zero and solving. The solution requires the same type of iterative computation that is used in 

the simpler binary outcome case (Hosmer & Lemeshow, 2000). For a more detailed discussion, 

see Applied Logistic Regression by Hosmer & Lemeshow.  

With now a basic understanding of the multinomial logistic regression model, we can 

move on to a description of the methodology that we used in order to predict future OAB scores. 

The goal here is to determine with what probability, after a game event occurs, the population 

will blame an actor for that event happening, and to see over time with a small use case that 

follows from section 4.5.1, how these probabilities change. As our response variable, we used 

question 47 of the survey described earlier in section 4.2. The question asked: “In your opinion, 

which of the following groups is most to blame for ongoing violence in your country today?” 

The response options were: “Rebel Groups”, “International Terrorists”, “Common Criminals”, 

“The Military”, “Government Officials”, or “Foreign Countries”. This particular question was 

chosen because it was the only one that asked about the specific actors that we felt were most 

relevant in an IW TWG scenario. Since we wanted a samples’ issue stance score to have some 

influence over their OAB towards an actor, we built a multinomial logistic regression model with 

question 47 as the six category response variable, and the four key issues, X2, X4, X5, and X10, 

as the predictor variables. The mlogit library in the R statistical package gives us the following 

five logit functions, using “Rebel Groups” as the baseline, where 𝐱 = 〈𝑋2,𝑋4,𝑋5,𝑋10〉: 

𝑔1(𝐱) = 𝑙𝑛 �
𝑃(𝑌 = 𝑇𝑒𝑟𝑟𝑜𝑟𝑖𝑠𝑡𝑠|𝐱)
𝑃(𝑌 = 𝑅𝑒𝑏𝑒𝑙𝑠|𝐱) � = −0.51 − 0.31𝑋2 + 0.06𝑋4 + 0.01𝑋5 + 0.23𝑋10 , 

𝑔2(𝐱) = 𝑙𝑛 �
𝑃(𝑌 = 𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙𝑠|𝐱)
𝑃(𝑌 = 𝑅𝑒𝑏𝑒𝑙𝑠|𝐱)

� = 0.85 − 0.34𝑋2 − 0.01𝑋4 + 0.11𝑋5 + 0.08𝑋10 , 

𝑔3(𝐱) = 𝑙𝑛 �
𝑃(𝑌 = 𝑀𝑖𝑙𝑖𝑡𝑎𝑟𝑦|𝐱)
𝑃(𝑌 = 𝑅𝑒𝑏𝑒𝑙𝑠|𝐱)

� = −0.21 − 0.12𝑋2 + 0.06𝑋4 − 0.09𝑋5 + 0.04𝑋10 , 

𝑔4(𝐱) = 𝑙𝑛 �
𝑃(𝑌 = 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡|𝐱)

𝑃(𝑌 = 𝑅𝑒𝑏𝑒𝑙𝑠|𝐱)
� = 1.8 − 0.14𝑋2 + 0.02𝑋4 − 0.16𝑋5 − 0.2𝑋10 , and 

𝑔5(𝐱) = 𝑙𝑛 �
𝑃(𝑌 = 𝐹𝑜𝑟𝑒𝑖𝑔𝑛|𝐱)
𝑃(𝑌 = 𝑅𝑒𝑏𝑒𝑙𝑠|𝐱)

� = −1.2 − 0.07𝑋2 − 0.02𝑋4 − 0.01𝑋5 − 0.3𝑋10 . 
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The six conditional probability models are then given as: 

𝑃(𝑌 = 𝑅𝑒𝑏𝑒𝑙𝑠|𝐱) =
1

1 + 𝑒𝑔1(𝐱) + 𝑒𝑔2(𝐱) + 𝑒𝑔3(𝐱) + 𝑒𝑔4(𝐱) + 𝑒𝑔5(𝐱) , 

𝑃(𝑌 = 𝑇𝑒𝑟𝑟𝑜𝑟𝑖𝑠𝑡𝑠|𝐱) =
𝑒𝑔1(𝐱)

1 + 𝑒𝑔1(𝐱) + 𝑒𝑔2(𝐱) + 𝑒𝑔3(𝐱) + 𝑒𝑔4(𝐱) + 𝑒𝑔5(𝐱) , 

𝑃(𝑌 = 𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙𝑠|𝐱) =
𝑒𝑔2(𝐱)

1 + 𝑒𝑔1(𝐱) + 𝑒𝑔2(𝐱) + 𝑒𝑔3(𝐱) + 𝑒𝑔4(𝐱) + 𝑒𝑔5(𝐱) , 

𝑃(𝑌 = 𝑀𝑖𝑙𝑖𝑡𝑎𝑟𝑦|𝐱) =
𝑒𝑔3(𝐱)

1 + 𝑒𝑔1(𝐱) + 𝑒𝑔2(𝐱) + 𝑒𝑔3(𝐱) + 𝑒𝑔4(𝐱) + 𝑒𝑔5(𝐱) , 

𝑃(𝑌 = 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡|𝐱) =
𝑒𝑔4(𝐱)

1 + 𝑒𝑔1(𝐱) + 𝑒𝑔2(𝐱) + 𝑒𝑔3(𝐱) + 𝑒𝑔4(𝐱) + 𝑒𝑔5(𝐱)  , and 

𝑃(𝑌 = 𝐹𝑜𝑟𝑒𝑖𝑔𝑛|𝐱) =
𝑒𝑔5(𝐱)

1 + 𝑒𝑔1(𝐱) + 𝑒𝑔2(𝐱) + 𝑒𝑔3(𝐱) + 𝑒𝑔4(𝐱) + 𝑒𝑔5(𝐱) . 

These multinomial logistic regression equations will be used in our use case to determine future 

observed attitudes and behaviors of the population towards each actor in the proof of principle 

scenario that follows. In order to determine how well our models fit the data, we could subset our 

data into a training set as well as a test set, re-build our models on the training set, apply these to 

our test set, and see how well our models predict our response variable. Ideally, our test set 

would be next year’s survey, assuming of course the same questions are asked, enabling us to 

determine the predictive power of our models.  

4.5.3 Proof of Principle Scenario 

In order to predict future issue stance scores, we would require a certain amount of 

subject matter expert (SME) input. That is, for each event scheduled to happen during our small 

use case, we would need to solicit SME input in order to determine how these would affect 

population views with respect to the 26 factors and 4 additional survey questions. Each of the 30 

variables would get a score between -2 and 2 for each event, with -2 corresponding to a highly 

negative impact, -1 to a slightly negative impact, 0 to no impact, 1 to a slightly positive impact, 

and 2 to a highly positive impact. For our purposes in this project, as it is only a “proof of 

principle”, SME input was notional and generated in a random fashion using an Excel 
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spreadsheet and input into the models from there (see Appendix D). Additionally, if we should 

use this methodology during an actual IW TWG, we would probably want to subset the data into 

different population stereotypes before building our models, and then use those models and SME 

input as described above for each separate stereotype. This would enable us to more effectively 

model the population. But again, as this was only a “proof of principle”, we built one set of 

models for the entire population. We first need to calculate the initial issue stance score and 

OAB probabilities in order to instantiate our model. The initial issue stance score will result in a 

number between -2 and 2 (the same range as the re-scaled factor scores), and is accomplished by 

using the mean score for each factor as input for each of the four separate equations. The initial 

issue stance scores are given in Table 3. 

Response Variable Initial Issue Stance Score 

X2. U.S. Assistance to Nigeria 0.178 

X4. Social & Essential Services 0.151 

X5. Trust in Government Agencies -0.145 

X10. Democracy 0.272 

Table 3.   Initial issue stance ccores by key issue 

The initial OABs are calculated similarly, using the mean factor scores for X2, X4, X5, 

and X10 as inputs for our conditional six probability models. The initial OAB probabilities are 

given in Table 4. 

Actor Initial OAB Probability 

Rebel Groups 0.093 

International Terrorists 0.057 

Common Criminals 0.206 

Military 0.076 

Government Officials 0.541 

Foreign Countries 0.027 

Table 4.   Initial OAB probabilities by actor 
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Once our initial issue stance scores are determined, we can now use our linear regression 

equations in order to predict, with SME input, future scores. Given below in Figure 5 are the 

results of a small “proof of principle” example consisting of only 20 events with randomly 

generated scores, each occurring randomly over 200 time steps. These graphs show the 

cumulative change for each of the four issue stances over time. 

 

Figure 5.   Cumulative issue stance score over time for the 4 key issues. 

We can see from the graphs that our randomly generated events have made the population’s 

issue stance concerning “U.S. Assistance to Nigeria” and “Trust in Government Agencies” both 

decrease over time, while “Social & Essential Services” and “Democracy” see an upward trend. 

Shown below in Figure 6 is a brief listing of events (including the first and last 25) by time step 

and the change in each issue stance score. 
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Figure 6.   Partial listing of cumulative issue stance changes over time 

Time Event X2 X4 X5 X10
0 0 0.178 0.151 -0.145 0.272
1 16 -0.859 0.046 -0.482 0.331
2 2 0.131 0.79 -0.4 0.578
3 20 -1.193 0.227 -0.354 1.51
4 19 -0.859 0.793 -0.194 2.178
5 16 -1.896 0.688 -0.531 2.237
6 12 -2.005 1.035 -0.77 2.284
7 11 -0.928 1.696 -0.435 2.631
8 10 -2.203 1.983 -1.326 2.567
9 17 -2.081 2.149 -2.951 1.597
10 19 -1.747 2.715 -2.791 2.265
11 15 -2.661 1.635 -3.632 2.256
12 19 -2.327 2.201 -3.472 2.924
13 20 -3.651 1.638 -3.426 3.856
14 4 -4.224 1.194 -3.502 3.878
15 20 -5.548 0.631 -3.456 4.81
16 13 -5.018 0.906 -4.224 4.486
17 20 -6.342 0.343 -4.178 5.418
18 7 -6.854 0.125 -4.561 5.043
19 5 -8.141 -0.16 -5.498 4.452
20 7 -8.653 -0.378 -5.881 4.077
21 4 -9.226 -0.822 -5.957 4.099
22 9 -9.27 -1.43 -6.456 3.602
23 10 -10.545 -1.143 -7.347 3.538
24 8 -11.291 -0.985 -8.252 3.918
25 11 -10.214 -0.324 -7.917 4.265

176 4 -60.405 -2.004 -59.322 27.751
177 1 -60.328 -2.098 -58.959 29.19
178 3 -61.104 -2.126 -59.968 28.321
179 19 -60.77 -1.56 -59.808 28.989
180 16 -61.807 -1.665 -60.145 29.048
181 2 -60.817 -0.921 -60.063 29.295
182 13 -60.287 -0.646 -60.831 28.971
183 7 -60.799 -0.864 -61.214 28.596
184 8 -61.545 -0.706 -62.119 28.976
185 1 -61.468 -0.8 -61.756 30.415
186 1 -61.391 -0.894 -61.393 31.854
187 15 -62.305 -1.974 -62.234 31.845
188 11 -61.228 -1.313 -61.899 32.192
189 17 -61.106 -1.147 -63.524 31.222
190 18 -62.096 -0.45 -63.047 32.145
191 8 -62.842 -0.292 -63.952 32.525
192 3 -63.618 -0.32 -64.961 31.656
193 11 -62.541 0.341 -64.626 32.003
194 6 -61.831 0.084 -64.246 32.925
195 5 -63.118 -0.201 -65.183 32.334
196 11 -62.041 0.46 -64.848 32.681
197 18 -63.031 1.157 -64.371 33.604
198 1 -62.954 1.063 -64.008 35.043
199 19 -62.62 1.629 -63.848 35.711
200 10 -63.895 1.916 -64.739 35.647
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Turning our attention now to predicting future OAB probabilities using the multinomial 

logistic regression equations developed in the previous section, and using the same 20 events 

across 200 time steps as described above, we can look at how the OABs toward each actor 

change over time as seen in Figure 7. 

 

Figure 7.   Observed attitude and behavior probabilities over time. 

The “Government” OAB has the most variation over time, while the others tended to stay 

relatively close to their initial value. This is primarily due to the fact that an overwhelming 

majority of survey respondents had selected “Government Officials” as the primary source of 

blame for the ongoing violence in their country. Shown below in Figure 8 is a listing of events 

(including the first and last 25) by time step and the change in each OAB. 
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Figure 8.   Partial listing of observed attitude and behavior probabilities over time 

 For both the predicted issue stance scores as well as the OAB probabilities, the event 

driven values in the form of a look-up table are available in Appendix D.   

Time Event Rebel_Groups International_Terrorists Common_Criminals Military Government Foreign_Countries
0 0 0.093 0.057 0.206 0.076 0.541 0.027
1 16 0.073 0.061 0.234 0.068 0.539 0.024
2 2 0.108 0.053 0.184 0.082 0.545 0.029
3 20 0.075 0.082 0.299 0.071 0.453 0.02
4 19 0.1 0.066 0.223 0.082 0.504 0.025
5 16 0.073 0.061 0.234 0.068 0.539 0.024
6 12 0.086 0.055 0.203 0.074 0.555 0.027
7 11 0.112 0.055 0.193 0.082 0.528 0.029
8 10 0.066 0.059 0.213 0.068 0.57 0.023
9 17 0.071 0.033 0.123 0.064 0.68 0.029
10 19 0.1 0.066 0.223 0.082 0.504 0.025
11 15 0.073 0.054 0.212 0.066 0.57 0.025
12 19 0.1 0.066 0.223 0.082 0.504 0.025
13 20 0.075 0.082 0.299 0.071 0.453 0.02
14 4 0.081 0.057 0.229 0.069 0.538 0.026
15 20 0.075 0.082 0.299 0.071 0.453 0.02
16 13 0.089 0.043 0.154 0.073 0.612 0.029
17 20 0.075 0.082 0.299 0.071 0.453 0.02
18 7 0.077 0.049 0.199 0.067 0.58 0.028
19 5 0.063 0.048 0.196 0.062 0.605 0.025
20 7 0.077 0.049 0.199 0.067 0.58 0.028
21 4 0.081 0.057 0.229 0.069 0.538 0.026
22 9 0.083 0.043 0.178 0.066 0.601 0.03
23 10 0.066 0.059 0.213 0.068 0.57 0.023
24 8 0.076 0.063 0.211 0.074 0.554 0.023
25 11 0.112 0.055 0.193 0.082 0.528 0.029

176 4 0.081 0.057 0.229 0.069 0.538 0.026
177 1 0.102 0.083 0.272 0.083 0.437 0.022
178 3 0.066 0.041 0.168 0.062 0.635 0.028
179 19 0.1 0.066 0.223 0.082 0.504 0.025
180 16 0.073 0.061 0.234 0.068 0.539 0.024
181 2 0.108 0.053 0.184 0.082 0.545 0.029
182 13 0.089 0.043 0.154 0.073 0.612 0.029
183 7 0.077 0.049 0.199 0.067 0.58 0.028
184 8 0.076 0.063 0.211 0.074 0.554 0.023
185 1 0.102 0.083 0.272 0.083 0.437 0.022
186 1 0.102 0.083 0.272 0.083 0.437 0.022
187 15 0.073 0.054 0.212 0.066 0.57 0.025
188 11 0.112 0.055 0.193 0.082 0.528 0.029
189 17 0.071 0.033 0.123 0.064 0.68 0.029
190 18 0.08 0.085 0.297 0.076 0.442 0.021
191 8 0.076 0.063 0.211 0.074 0.554 0.023
192 3 0.066 0.041 0.168 0.062 0.635 0.028
193 11 0.112 0.055 0.193 0.082 0.528 0.029
194 6 0.112 0.066 0.231 0.082 0.482 0.026
195 5 0.063 0.048 0.196 0.062 0.605 0.025
196 11 0.112 0.055 0.193 0.082 0.528 0.029
197 18 0.08 0.085 0.297 0.076 0.442 0.021
198 1 0.102 0.083 0.272 0.083 0.437 0.022
199 19 0.1 0.066 0.223 0.082 0.504 0.025
200 10 0.066 0.059 0.213 0.068 0.57 0.023
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SECTION 5. CONCLUSION 

The assessment framework built for this project was designed with two things in mind: 

one, to give an analyst operating in the AFRICOM AOR a starting point or list of “good ideas” 

from which they could then refine based on specific locations or circumstances, and two, its 

broad and rather generic construct allowed the project team to gather as many data sources as 

possible to inform the framework, and subsequently, the end user. Finding the actual sources of 

data can at times be difficult. While the project team endeavored to discover as many 

quantitative, sources as we could, in some cases we fell short, and were only able to identify ones 

of a qualitative nature, and sometimes none at all. These areas were identified as gaps in our data 

collection efforts, and should give the user an idea of what data is and is not available. The 

additional functionality added to DaViTo completed during this effort allows the user to in a 

sense automate the assessments process, making for easier data input as well as the capability to 

display analytic results. Finally, this effort sought to create a methodology for building a scenario 

that can predict future population responses to issue stance and OABs in direct support of 

TRAC’s IW TWG. Part of the methodology, to include the recoding/imputation and factor 

analysis relied heavily on work done by LCDR W. Kulzy (see References). His thesis compared 

factors between countries in the Sahel region of Africa, and not, as this effort did, on building 

predictive models, but his work was nonetheless critical to this project. Additionally, while this 

effort developed a scenario in Nigeria, the same methodology could be used anywhere in the 

world, provided good survey data is available. The recoding and imputation, factor analysis, and 

model building are universally applicable regardless of scenario location.  

Future work along the lines of this project would undoubtedly involve the refinement of 

the assessment framework and further development of data sources as they become more 

available. The scenario methodology also has room for growth. Instead of utilizing a single set of 

models for the issue stances and OABs, a nice follow-on to this effort would be to develop sets 

of dynamic and continually updating models having the ability to adjust during a wargame 

according to events and the shifting views of the population. This would undoubtedly mirror 

reality better than a single set of static equations that do not change as the population and players 

do.   
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APPENDIX A. ASSESSMENT FRAMEWORK USER’S GUIDE 

 At present, the spreadsheet tool contains 158 lines of data sources and reading 

through the document is a time consuming endeavor. When time is of the essence, the most 

efficient way to use the tool is to start with a brief familiarization of topics included in the data 

set by looking at the Operational Environment section, and reviewing which Lines of Effort are 

included for the user. Next, the user should look to the “Find” tool to rapidly identify where in 

the spreadsheet a certain type of data can be found. If a response is found, go to that specific 

section of the spreadsheet and look at responses, usually found in Column G, “Data Source.”  In 

addition to the specific data source in Column G, the user of this tool should look to the left 

columns to determine if overarching data sources are available. When an overarching product 

related to many data sources, it is listed in Column A. For example, rather than listing the US 

Army Africa G2 has in depth Operational Environment briefs that can be accessed via 

http://www.intelink.sgov.gov/wiki/usaraf_G2_PMESII-JIPOE in numerous components of 

Column G, we have chosen to put it only once in Column A, under “Describing the Operational 

Environment.”  When a source appears on Column A, it should consider this as an overarching 

source with general applicability to numerous lines in Column G-Data Source.   

Similarly, as the user moves to the right of the spreadsheet, in the Area and Indicator 

column, there are similar websites/texts that have general applicability to multiple sections of 

Column G-Data Source. If there is an annotation in Area and Indicator section of a data source, 

the tool user should assume that this source has diverse applicability to numerous components of 

Column G. In summary, general sources appear to the left of the spreadsheet, while specific data 

points appear to the right.   

In some cases, there are conceptual similarities and similar data sources for certain issues. 

In these cases, Column D simply refers the user to a separate section of the spreadsheet, rather 

than copying the entire list of data sources. For example, line 21 of the tool requires data on 

Political / religious / tribal motivations by group and line 22 indicates a need for Size of the 

Groups. The data sources found for both sections were the same, thus the user is referred to the 

line above, rather than copying all again. 
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Finally, the user of the tool should exercise caution in evaluating the data sources.  

Ultimately, data should be pulled from numerous data points and not a single source. For 

example, in the event that a researcher is looking the issue of civilian casualties in an African 

Conflict, it would be of utility to look at the text that appears which describes the issue of 

Civilian Casualties generally, then look to the Africa landing page of the International 

Committee of the Red Cross for high profile cases, drill down to the country office to collect 

additional environmental, and finally look to advocacy organization listed for additional data.  

Keep in mind that the list of data sources is not rank ordered. If one book is listed second, it does 

not mean that the first listed book is considered to be “better.” 
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APPENDIX B. NIGERIA FOCUSED DATA COLLECTION EFFORTS 

Background:  

Nigeria is one of the countries in the Sahel region of Africa. For the purposes of this 

document, we have taken “Sahel” to include Nigeria and also Benin, Burkina Faso, Chad, Côte 

d'Ivoire, Ghana, Guinea, Guinea-Bisseau, Mali, Mauritania, Niger, Senegal, Sierra Leone, and 

Togo, plus Nigeria’s neighbor of Cameroon. 

Administratively, Nigeria is divided into 36 states plus the Federal Capital Territory 

(FCT). We will include the FCT when we refer to “states.” States are divided into “local 

government areas,” or LGAs. There are 787 LGAs in Nigeria, and it may be worth noting that 

some names are duplicated across states (there are also variations in spelling from source to 

source). 

Population by LGA:  

We extracted the population data from a table we found at this link. The link is currently 

broken, but the file, named “Vol 03 Table DSx LGAPop by SDistrict-PDF.pdf,” is available 

here. Each of the 37 population tables was highlighted in the PDF file and copied to the 

clipboard, and then the R function pdf.grabber()(see Appendix D) was used to produce an 

R object reflecting the contents of that table. Each table gives the LGA name, the land area of the 

LGA, and the population in that LGA (by gender, and in total). Observe that the “District 

Number” field as provided is not always sequential. The state-specific tables were combined into 

one object with 787 rows, which can be found in state.lga.csv. We ignored the “Disputed 

Areas” counts in Taraba State (p. 32 of the PDF file), which accounted for 10,106 men and 9,858 

women. Therefore our grand total is smaller than the one in the PDF by these numbers. Although 

we do have population data by LGA, most data available from major organizations like the 

United Nations and the CIA is at the country level only.  

United Nations Data:  

The United Nations has “summary data” for each member country, at pages with 

addresses like, for example, http://data.un.org/CountryProfile.aspx ?crName=CAMEROON. For 
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each country, the data between the header “Summary Statistics” and the “trade profile” was 

highlighted and copied to the clipboard; then the R function handle.un.stats()(see 

Appendix D) was used to produce a country-specific data set. In addition to Nigeria, we did this 

for each of the Sahel countries. The resulting combined data set is provided as un.data.xlsx. 

CIA Word Factbook:  

The CIA World Factbook is available for download at this link. The directory called 

“fields” holds a set of files, each file holding all the values of one “fact” for all countries. Our 

function fact.grabber()grabs a single fact for a single country; fact.looper()(see 

Appendix D) grabs all the facts for a single country; the script file cia.script.R (see 

Appendix D) runs the loop to extract all facts for all relevant countries. The full set of facts for 

the Sahel countries plus Nigeria is found in Ciafactsfull.xls. Many times the facts 

contains several years’ worth of data, separated by semi-colons. A second output file, 

Ciafacts.xls, contains only the most recent data for any fact (this workbook has two sheets. 

The second, “Xposed,” presents the data transposed, so that there is one row per country and one 

column per fact). 

World Bank Data:  

The World Bank’s web site contains a substantial amount of data, organized by 18 broad 

topic areas like Agriculture and Rural Development, Education, and Poverty. Each topic is 

addressed by a number of indicators (though some indicators pertain to more than one topic). 

There are 318 distinct indicators; the list of indicators organized by topic can be seen at this link. 

Our WorldBank.R (see Appendix D) script serves to read all of these indicators directly from 

the web (these steps require the use of R’s RCurl and XML packages to read in and decode the 

data, and RODBC for an easy way to write them out as separate worksheets in an Excel 

workbook). This script requires the wb.format.one()function (see Appendix D), which 

writes a particular indicator to disc or returns it (some tables, however, are empty and those are 

skipped). Many entries are missing. Most indicators stop at the year 2010; in order to ensure that 

all output has the same number of columns we have omitted 2011 data when it appears. The data 

set is seen as WB.datadump.xls. Note that, because of operator error, the set of countries 
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included here omits Sierra Leone but includes Liberia, and each worksheet starts with two 

column headers. 

World Bank ADI:  

The World Bank also makes available its Africa Development Indicator (ADI) data.  This 

can be downloaded from the “Databank” link in the top-right of this page.  This has a similar 

flavor to the data above but it extends back as far as 1960 and includes 2,409 indicators. We 

found the spreadsheet exported from the databank to seem some manipulation, which was 

performed by the ADI.handler.R script (see Appendix D). The data set resulting from this 

analysis is found here.  

African Development Bank Group: The ADBG’s Data Query page can be found at this link. 

This data is organized into 16 topics, which at the site are called “Indicators,” but we will use 

“indicators” as in “World Bank Data” above to refer to the individual values. There are 708 

unique indicators in this data. Because the topics are of quite different sizes, we have 

downloaded this data into a group containing topics 1-6, one containing topics 7-12, one with 

topic 13 and another with topic 14. The workbooks containing this data can be found in this 

directory. 

Piracy Data:  

We extracted piracy data from the ICC Commercial Crimer Services database. An 

example report can be found at this site and others can be retrieved by varying the last three 

digits of that address. Our pirate.grabber()function (see Appendix D) extracts one such 

report; pirate.looper()(see Appendix D) extracts a set; and the Piracy.R script (see 

Appendix D) assembles these into a database, extracting only those for which the reported 

country was one of Ghana, Benin, Togo, Nigeria, Cameroon, or Equitorial Guinea. The data set 

is located here. 

Other “Official” Data Sources: 

The United Nations Economic Commission for Africa (UNECA) maintains a substantial 

library of publications at this site. These include the African Statistical Yearbook, the 2011 

version of which can also be found here. The UN also maintains its Data Mart which has a large 
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and perhaps slightly unfocused collection of data some of which is detailed at the national level. 

The Nigerian National Bureau of Statistics website is in the process of being upgraded. The “data 

portal” holds great promise for extracting official government data by state. The National 

Population Commission site seems to be not quite as useful. Some data on energy production can 

be found at the U.S. Energy Information Administration’s web site. The Nigeria page can be 

found at this link. 

Other Unofficial Data Sources:  

Detailed trade information can be found at the “African Growth and Opportunity Act” 

website maintained by the Trade Law Centre for Southern Africa. Nigeria’s page can be found at 

this link. This website hosted at Columbia University delivers poverty and food security data for 

many countries. However, the selection for Nigeria is limited. The Cleen foundation reports what 

it says are crime statistics for Nigeria (see this link), but no source appears to be given. 

Shape Files:  

Nigeria’s site at maplibrary.org (at this page) contains shape files giving a satellite image 

of Nigeria, and the polygons that make up the states and LGAs. Some general notes on sources 

are available. In particular the satellite imagery is said to have come from NASA. The website 

for the GIS software DIVA-GIS (found at this page) provides many shape files of different sorts. 

The software’s focus is on natural and biological resources and we have downloaded plausible-

looking shape files giving water areas, rivers, and roads. The sources for the shape files are 

rarely revealed, however. 
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APPENDIX C. R CODE FOR CAPTURING / DOWNLOADING DATA 
SOURCES 

> pdf.grabber 
function () { 
 
# This function turns some data copied from the document at  
# http://population.gov.ng/images/stories/Vol%2003%20Table%20DSx%20LGAPop%20by%20SDistrict-
PDF.pdf into a table. Copy the state-specific table to the clipboard and this formats the table. 
 
# The key delimiters are integers that name the LGAs (in at least one 
# case the compilers of the table skipped an integer, so we use length() 
# rather than max()) and senatorial districts (apparently, each states 
# gets three senators, except for Abuja FCT, which gets one). 
 
# Between the row number and the senator is the name of the district, 
# which can have multiple words. The four columns after the senator give 
# the land size, male pop'n, female pop'n, and total. 
 
# Read in the data; remove everything before the first "1". If there 
# are zero "1", or two or more, stop. 
 
str <- scan ("clipboard", what="") 
one <- str == "1" 
if (sum (one) != 1) stop (paste ("Ones in positions", which (one))) 
str <- str[-(1:(which(one) - 1))] 
 
# Kill the commas, because at least one state has 'em. 
 
str <- gsub (",", "", str) 
 
# You're a row number if you're numeric and you're < 50 (because no state 
# has more than 44 LGAs!) and you're an integer. 
 
nums <- as.numeric (str) 
rownums <- which (!is.na (nums) & nums < 50 & nums - trunc(nums) < .00001) 
 
# In Akwa Ibom, rows 234 and 256 should be 23 and 25. 
 
rownums <- sort (c(rownums, which ( (nums == 234 | nums == 256) & nums - trunc(nums) < .00001))) 
 
senator <- which (is.element (str, c("A", "B", "C"))) 
 
# Construct the "out" matrix; put row numbers and senators in. 
 
out <- matrix ("", length (nums[rownums]), 7) 
out[,1] <- nums[rownums] 
out[,3] <- str[senator] 
 
# For each row, paste the name parts together and move the  
# populations into "out". 
 
for (i in 1:nrow(out)) { 
if ((rownums[i] + 1) == (senator[i] - 1)) 
    out[i,2] <- str[rownums[i] + 1] 
else 
    out[i,2] <- paste (str[(rownums[i] + 1):(senator[i] - 1)], collapse=" ") 
out[i, 4:7] <- str[(senator[i] + 1):(senator[i] +4)] 
} 
 
# The result is a matrix. Make it a data frame, converting those last four columns to numeric. 
 
out <- as.data.frame (out, stringsAsFactors=FALSE) 
names (out) <- c("Dist", "Name", "Sen", "Land", "Male", "Female", "Total") 
out[,4:7] <- matrix (as.numeric (unlist (out[,4:7])), ncol=4) 
return (out) 
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} 
# HANDLE.UN.STATS 
 
> handle.un.stats 
function ()  
{ 
 
# Read data in. Ignore quotes, or you'll be abused by Cote d'Ivoire! 
 
a <- scan ("clipboard", what="", sep="\t", quote=NULL) 
a <- a[a != "Summary statistics" & a != "Economic indicators"] 
a <- a[a != "Environment" & a != "Social indicators"] 
a <- a[a != "Top"] 
a 
} 
 
# FACT.GRABBER 
 
> fact.grabber 
function (item = "2089.html", country)  
{ 
fname <- paste ("fields/", item, sep="") 
txt <- scan (fname, what="", sep="\n", quiet=T) 
hdr <- txt[grep ("::", txt)][1] 
 
# The header is between two colons and a ">". There should only be one 
# "::", but there were two, for example, in 2033.html for Venezuela. 
# So take the first instance. 
 
colons <- regexpr ("::", hdr) 
hdr <- substring (hdr, colons  + 3) # allow for a space 
lt <- regexpr ("<", hdr) 
hdr <- substring (hdr, 1, lt - 1) 
death <- readHTMLTable (fname)[[country]] 
if (length (death) == 0) 
   d2 <- "Missing" 
else 
    d2 <- as.character(death[2,2]) 
return (c(hdr, d2)) 
} 
 
# FACT.LOOPER 
 
> fact.looper 
function (country = "ni")  
{ 
 
# Grab all the CIA facts for one country. The relevant files have names that start with "2."  
 
f <- list.files ("fields", pattern="^2") 
 
out <- matrix ("", length (f), 3) 
out[,1] <- f 
for (i in 1:length(f)) { 
    out[i, 2:3] <- fact.grabber (f[i], country) 
} 
out 
} 
 
# cia.script.R 
 
# CIA Fact Book stuff 
 
# We dump and unzip the CIA fact book. 
 
library (XML) 
fact.grabber (2003, "ni") 
 
# extracts the particular report about Nigeria in document <...> field/2003.html. 
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fact.looper (, "ni") 
 
# gets (by default) all the facts about Nigeria. 
 
countries <- c("Nigeria", "Mauritania", "Senegal", "Guinea-Bissau",  
"Guinea", "Sierra Leone", "Liberia", "Cote d'Ivoire", "Mali", 
"Burkina Faso", "Ghana", "Togo", "Benin", "Niger", "Chad", "Cameroon") 
countries <- cbind (countries, c("ni", "mr", "sg", "pu", "gv", 
"sl", "li", "iv", "ml", "uv", "gh", "to", "bn", "ng", "cd", "cm")) 
 
# "Countries" is 16x2, each row giving a name and a two-letter identifier 
# for one of the countries of the Sahel (plus Cameroon). 
# So we get the whole set like this: 
for (i in 2:16) { 
assign (countries[i,2], fact.looper (countries[i,2]), pos = 1, immediate=TRUE) 
} 
 
# Ensure all the first columns match 
 
for (i in 2:16) print (all (ni[,1] == get (countries[i,2])[,1]) 
) 
 
# Now let's assemble them. The embedded new-line characters turn out to get in the way 
# (who saw that coming?). So let's change them to, I don't know, semi-colons for the moment. 
# Also kill any spaces that precede or follow new lines.  
 
cia <- eval (parse (text = paste ("data.frame (", paste (countries[,2], "[,3,drop=F]", 
collapse=","), ", stringsAsFactors=FALSE)"))) 
cia <- data.frame (ni[,2], cia, stringsAsFactors=FALSE) 
names (cia) <- make.names (c("Measure", countries[,1])) 
for (i in 1:ncol (cia)) 
{ 
 
# The outer ()+ thing means "match lazily, that is, keep matching until you come to an end 
#(instead of stopping as soon as you see a match." The inside part describes space(s), new-line, 
# space(s). Finding the maximal set of those, turn them into one semi-colon. The asterisks in 
#front of the [[:blank:]] part says "zero or more blanks." 
 
# match zero or more blanks, new line, zero or more blanks; change all of those to ; 
    cia[,i] <- gsub ("(*[[:blank:]]\n*[[:blank:]])+", ";", cia[,i]) 
} 
 
write.table (cia, "../cia.tsv", sep="\t", row.names=FALSE, col.names=TRUE, quote=FALSE) 
# 
# This got turned into Ciafactsfull.xls. 
# 
# Here we remove everything in any entry starting at the first semi-colon. 
for (i in 1:ncol (cia)) 
{ 
    semicolon <- regexpr (";", cia[,i]) 
    cia[semicolon > 1,i] <- substring (cia[semicolon > 1,i], 1, semicolon[semicolon > 1] - 1) 
} 
write.table (cia, "../cia2.tsv", sep="\t", row.names=FALSE, col.names=TRUE, quote=FALSE) 
 
# This got turned into Ciafacts.xls. Page 2 has the transposed version, which might be easier to 
read. 
 
# WORLDBANK.R 
 
# Grab World Bank stuff 
 
# The World Bank Indicators are held here: 
 
# http://data.worldbank.org/indicator 
 
wb.indic.out <- getURI ("http://data.worldbank.org/indicator") 
 
# This item has 18 tables, each with a set of indicators. 
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wb.indicators <- vector ("list", 18) 
for (i in 1:18) { 
    this.set <- readHTMLTable (wb.indic.out)[[i]] 
    this.set <- as.character(unlist (this.set)) 
    this.set <- this.set[this.set != ""] 
    index <- character (length (this.set)) 
    for (j in 1:length (this.set)) { 
        start <- regexpr (this.set[j], wb.indic.out, fixed=TRUE) 
        mychars <- substring (wb.indic.out, start - 100, start) 
        mychars <- substring (mychars, regexpr ("indicator/", mychars) + nchar ("indicator/")) 
        index[j] <- substring (mychars, 1, regexpr ("\"", mychars) - 1) 
    } 
    wb.indicators[[i]] <- data.frame (Description = this.set, Indicator = index, 
stringsAsFactors=FALSE) 
} 
 
# Some weird one we fix by hand 
 
wb.indicators[[3]][18,2] <- "NY.GNP.PCAP.CD" 
wb.indicators[[4]][15,2] <- "NY.GNP.PCAP.CD" 
wb.indicators[[4]][38,2] <- "BX.TRF.PWKR.CD.DT" 
wb.indicators[[8]][22,2] <- "CM.MKT.INDX.ZG" 
wb.indicators[[8]][27,2] <- "BX.TRF.PWKR.CD.DT" 
wb.indicators[[16]][6,2] <- "SP.POP.SCIE.RD.P6" 
wb.indicators[[16]][10,2] <- "SP.POP.TECH.RD.P6" 
 
names (wb.indicators) <- c("Agriculture & Rural Development", "Aid Effectiveness",  
"Climate Change", "Economic Policy &  External Debt", "Education",  
"Energy & Mining", "Environment", "Financial Sector", "Gender", "Health",  
"Infrastructure", "Labor & Social Protection", "Poverty", "Private Sector",  
"Public Sector", "Science & Technology", "Social Development",  
"Urban Development")  
 
# For each indicator, hit the web and extract table 1. 
 
for (i in 13:18) { 
    cat ("We're at the top, and i is ", i, "\n") 
    newlist <- vector ("list", nrow (wb.indicators[[i]])) 
    names (newlist) <- wb.indicators[[i]][,2] 
    for (j in 1:nrow (wb.indicators[[i]])) { 
        cat ("We're in the loop, and j is ", j, "\n") 
        wb.tbl.out <- getURI (paste ("http://data.worldbank.org/indicator/", 
wb.indicators[[i]][j,2], sep="")) 
 
# Issues: "page could not be found" and no columns with dates (that is, "2" in the #name). 
# 
if (regexpr ("page could not be found", wb.tbl.out) <= 0) { 
     wb.countries <- readHTMLTable (wb.tbl.out, stringsAsFactors=FALSE)[[1]] 
      if (!all (regexpr ("2", wb.countries[,-1]) < 0)) { 
 
# Clean up column names, just because. Some have nothing in them, so in particular, they don't 
have a 2 or a "C."  
 
                names (wb.countries) <- gsub ("\n", "", names (wb.countries)) 
                wb.countries <- wb.countries[,regexpr ("C", names(wb.countries)) > 0 | regexpr 
("0", names (wb.countries)) > 0] 
                names (wb.countries) <- gsub ("[[:space:]]+$", "", names (wb.countries)) 
                names (wb.countries) <- gsub ("^[[:space:]]+", "", names (wb.countries)) 
                names (wb.countries)[1] <- "Country.name" # for neatness 
                result <- wb.countries[is.element (wb.countries$Country.name, c("Nigeria", 
"Benin", "Burkina Faso",  
                "Cameroon", "Chad",  "Cote d'Ivoire",  
                "Ghana", "Guinea", "Guinea-Bisseau", "Liberia", "Mali", "Mauritania", "Niger", 
"Senegal", "Togo") ),] 
                newlist[[j]] <- result 
                } 
             else 
                 cat ("Sadly, that table was empty.\n") 
            } 
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        else 
            cat ("Sadly, nothing was found there.\n") 
    } 
    assign (paste ("wb.indic.", ifelse (i < 10, "0", ""), i, sep = ""), newlist) 
} 
 
# Now that they're all built, let's write them out. 
 
for (i in 1:length (wb.indicators)) 
    for (j in 1:nrow (wb.indicators[[i]])) 
        wb.format.one (i, j) 
 
# Now check this out 
library (RODBC) 
myod <- odbcConnectExcel2007 ("q:/africom/Africa EDA/WorldBank/WB.Datadump.xls", 
                  readOnly=FALSE) 
for (i in 1:length (wb.indicators)) { 
    for (j in 1:nrow (wb.indicators[[i]])) { 
        tbl <- wb.format.one (i, j, write.out=F) 
        if (is.null (tbl) || all (tbl[-1,-1] == "")) 
            cat ("Skipping empty table ", i, j, "\n") 
        else { 
            cat ("About to try to write table ", i, j, "\n") 
            sqlSave (myod, tbl, tablename = wb.indicators.shortnms[i], 
                rownames=FALSE, colnames=TRUE, safer=FALSE, fast=FALSE, append=T) 
# insert blank line 
            tbl <- as.data.frame (matrix ("", 1, 5)) 
            sqlSave (myod, tbl, tablename = wb.indicators.shortnms[i], 
                rownames=FALSE, colnames=FALSE, safer=FALSE, fast=FALSE, append=T) 
 
        } 
    } 
} 
odbcCloseAll () 
 
# wb.format.one 
 
> wb.format.one 
function (topic, indic, write.out=TRUE, dir = "q:/africom/africa eda/WorldBank/") 
{ 
     fname <- paste ("wb.topic.", ifelse (topic <= 9, "0", ""), topic, ".tsv", sep="") 
     fname <- paste (dir, fname, sep="") 
     str <- paste ("wb.indic.", ifelse (topic <= 9, "0", ""), topic, "[[", indic, "]]", sep="") 
     tbl <- eval (parse (text = str)) 
     topic.name <- names (wb.indicators)[topic] 
     indic.name <- wb.indicators[[topic]][indic,1] 
     indic.short <- wb.indicators[[topic]][indic,2] 
     if (write.out == FALSE) { 
 
# For this purpose we require exactly the columns "Country", 
# "2007", "2008", "2009", and "2010." If some of these don't exist, 
# create them. We do this by creating a full-size item like this 
# and keeping the relevant columns. If 2011 exists, delete it.  
 
         if (is.null (tbl)) 
             return (tbl) 
         if (any (names (tbl) == "2011")) 
             tbl <- tbl[,names(tbl) != "2011"] 
         bigtbl <- as.data.frame (matrix ("", nrow(tbl), ncol=5), stringsAsFactors=FALSE) 
         names(bigtbl) <- c("Country.name", "2007", "2008", "2009", "2010") 
         bigtbl[,match (names(tbl), names(bigtbl))] <- tbl 
         hdr.1 <- c(topic.name, "", "", indic.short, "") 
         hdr.2 <- c(indic.name, "", "", "", "") 
         bigtbl <- rbind (hdr.1, hdr.2, bigtbl) 
         return (bigtbl) 
     } 
     if (indic == 1) append <- FALSE else append <- TRUE 
##   cat (paste (topic.name, "\t\t", indic.short, "\t\n", sep="")) 
     cat (paste (indic.name, "\t\t\t\t\n", sep=""), file = fname,  
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          append=ifelse (indic == 1, FALSE, TRUE))      
     cat (paste (indic.short, "\t\t\t\t\n", sep=""), file = fname, append=T) 
     write.table (tbl, file = fname, append=TRUE, sep="\t",  
                  col.names=TRUE, row.names=FALSE, quote=FALSE) 
     cat ("\n", file = fname, append=TRUE) 
} 
 
# ADI handler 
 
 
# Handle the funky ADI data. Highlight A1:BC84062.  
 
adi <- scan ("clipboard", what="", sep="\t", quote=NULL) 
adi <- adi[adi != "\""] 
adi.nms <- adi[1:55] 
adi <- as.data.frame (matrix (adi[-(1:55)], nrow = 84061, ncol=55, byrow=T)) 
names (adi) <- make.names (adi.nms) 
# They spell "Guinea-Bissau" without the second "e" 
keepers <- c("Nigeria", "Benin", "Burkina Faso", "Chad", "Cote d'Ivoire",   
"Ghana", "Guinea", "Guinea-Bissau", "Mali", "Mauritania", "Niger", "Senegal", 
"Sierra Leone", "Togo", "Cameroon") 
 
# Save those and write out. 
 
adi <- adi[is.element (adi$Country.Name, keepers),] 
write.table (adi, "Q:\\Africom\\Africa EDA\\DeliverToTom\\adi.csv", 
sep="\t", row.names=FALSE) 
 
# Pirate Grabber 
 
> pirate.grabber 
function (input = 130)  
{ 
base <- "http://www.icc-ccs.org/piracy-reporting-centre/live-piracy-report/details/116/" 
uri <- paste (base, input, sep="") 
pirates <- getURI (uri) 
cat (pirates, file = "h:/temp/killme.txt") 
p2 <- scan ("h:/temp/killme.txt", sep="\n", what="", quote=NULL) 
p3 <- gsub ("<.*?>", "", p2) # remove HTML between brackets 
p3 <- gsub ("\t", "", p3) # remove tabs 
p3 <- gsub("^ .", "", p3) # remove leading white space 
p3 <- gsub(" +$", "", p3) # remove trailing white space 
p3 <- p3[p3 != ""] 
p3 <- p3[-(1:which (p3 == "IMB Live Piracy Map 2012")[3])] 
p3 <- p3[p3 != "Ports Anchorages"] # that just gets in the way! 
 
# Here we fix some of their broken (colon-less) stuff. 
 
p3[p3 == "CPA in nm"] <- "CPA in nm:" 
p3[p3 == "crew threatened"] <- "Crew threatened:"  
p3[p3 == "Date Hijacked Vessel Released"] <- "Date Hijacked Vessel Released:" 
 
p3 <- p3[1: (grep ("WNI", p3) - 1)] 
p3 <- p3[-(1:grep (":", p3)[1] - 1)] 
p3.colons <- grep (":", p3) 
 
# Everything between "Narrations:" and "Date Hijacked Vessel Released" 
# constitutes narration. 
 
narr.start <- which (regexpr ("Narrations:", p3) > 0) + 1 
narr.end <- which (regexpr ("Date Hijacked Vessel Released:", p3) > 0) - 1 
date.released <- narr.end + 2  
p3 <- p3[1:(date.released + 3)] # cut off everything else 
narration <- paste (p3[narr.start:narr.end], collapse="\n") 
 
# Don't include narrations or date of release in the "nms" part. 
 
p3.colons <- p3.colons [!is.element (p3.colons, narr.start:narr.end)] 
p3.colons <- p3.colons[!is.element (p3.colons, date.released)] 
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# Some are missing, so here's a weak plan. Go down the 
# vector. If there's a colon, it's a header, else it's a value. 
 
nms <- p3[p3.colons] 
vals <- character (length (nms)) 
ctr <- 0 
for (i in 1:length (p3)) { 
    if (i %in% p3.colons) 
        ctr <- ctr + 1 
    else { 
        if (i == narr.start) 
            vals[ctr] <- narration 
        else  
            vals[ctr] <- p3[i] 
    } 
} 
return (cbind (nms, vals)) 
} 
 
# Pirate looper 
 
function ()  
{ 
 
# 173 incidents as of 5/22/2012. Let's grab them all and put their output into a list. 
 
keepsters <- vector ("list", 173) 
for (i in 1:173) { 
    cat ("Let's try number", i, "\n") 
    keepsters[[i]] <- pirate.grabber (i) 
} 
keepsters  
} 
 
# Piracy.R 
 
the.big.out <- pirate.looper () 
 
# Some of these have 48 rows, some have 50. 
 
country.grabber <- function (x) { 
    x[x[,1] == "Country:",2] 
} 
where <- sapply (the.big.out, country.grabber) 
the.big.out <- the.big.out[which (is.element (where,  
c("Ghana", "Benin", "Togo", "Nigeria","Cameroon", "Equitorial Guinea")))] 
 
# All of these have 50 rows... 
 
sapply (the.big.out, nrow) 
 
# ... and they all have the same entries in the first column 
 
sapply (the.big.out, function (x) all (x[,1] == the.big.out[[1]][,1])) 
 
# So put all the second columns together... 
 
pirates <- sapply (the.big.out, function(x) x[,2]) 
 
# Transpose, so that the attacks are in rows... 
#        
pirates <- t(pirates) 
 
# ...and add labels. These may have colons and/or trailing spaces. 
 
colname <- the.big.out[[1]][,1] 
colname <- sub (" +$", "", colname) 
colname <- sub (":", "", colname) 
colname <- sub (" +$", "", colname) 
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dimnames(pirates) <- list (NULL, colname) 
pirates <- as.data.frame (pirates, stringsAsFactors=FALSE) 
 
# Fix lat and long. These are four columns each. 
 
lat <- pirates[,grep ("LAT",  names (pirates))] 
newlat <- apply (lat, 1, function (x) { 
    xx <- as.numeric (x[1:3]) 
    amt <- xx[1] + xx[2]/60 + xx[3] / 3600 
    return (ifelse (x[4] == "N", amt, -amt)) 
}) 
pirates[, grep ("LAT", names (pirates))[1]] <- newlat # replace the first 
pirates <- pirates[, -grep ("LAT", names (pirates))[-1]] # delete the others 
names (pirates)[grep ("LAT", names (pirates))] <- "LAT" 
 
long <- pirates[,grep ("LONG",  names (pirates))] 
newlong <- apply (long, 1, function (x) { 
    xx <- as.numeric (x[1:3]) 
    amt <- xx[1] + xx[2]/60 + xx[3] / 3600 
    return (ifelse (x[4] == "E", amt, -amt)) 
}) 
pirates[, grep ("LONG", names (pirates))[1]] <- newlong # replace the first 
pirates <- pirates[, -grep ("LONG", names (pirates))[-1]] # delete the others 
names (pirates)[grep ("LONG", names (pirates))] <- "LONG" 
 
rm (lat, long, newlat, newlong, colname) 
 

write.table (pirates, "clipboard", sep="\t", quote=FALSE, col.names=TRUE, row.names=FALSE) 
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APPENDIX D. SME INPUT & LOOK-UP TABLE 

 

Figure 9.   Notional SME input values for each factor by event 

 
Figure 10.   Look-up table for issue stance and OAB by event 

Event X1 X3 X6 X7 X8 X9 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 Safety Goals Services Equality
1 -2 0 -1 0 -2 1 1 0 -2 1 1 0 -2 2 -1 -1 2 1 -2 0 0 -2 1 0 1 -1
2 0 2 2 0 0 0 -2 2 -2 -1 2 1 2 -2 0 2 1 -1 -1 0 0 2 -1 2 -1 0
3 0 -1 1 -2 2 -1 2 2 -1 0 -1 0 0 0 0 0 0 1 0 0 1 0 0 1 -2 0
4 0 -1 1 -2 2 1 0 2 1 1 0 -1 2 -2 1 0 2 1 0 -1 -2 -2 0 2 0 0
5 2 -2 -2 2 -2 -2 -2 2 1 -2 0 1 -2 0 -2 0 0 0 1 2 2 1 0 -2 -2 -2
6 0 2 2 -1 -1 1 2 0 -1 -2 1 0 1 1 -2 -1 2 -2 1 0 0 1 0 -1 -1 -2
7 0 -1 0 2 0 2 -2 0 0 -2 -1 1 2 2 2 0 -2 0 0 -1 2 0 -2 -1 0 2
8 -2 -2 -1 0 -1 -1 0 -2 2 2 0 1 0 -2 0 1 1 0 1 2 2 -2 1 0 2 0
9 2 0 -2 0 0 -1 -1 2 2 0 1 1 0 1 1 1 0 -1 0 1 -1 -2 -1 -2 0 1
10 0 -2 -1 0 1 0 -1 0 0 -2 0 -1 1 -2 0 1 -1 1 -2 1 -1 0 2 0 2 0
11 -1 2 0 0 0 0 0 2 0 2 2 0 0 2 2 0 1 0 0 0 -1 0 0 1 0 0
12 1 1 2 1 -1 0 -2 0 -2 -2 -2 -1 1 -1 0 -1 0 -1 0 1 0 1 0 0 -1 2
13 -2 2 2 -1 1 -2 -2 -2 0 0 2 0 2 -1 2 0 0 1 0 1 -2 -1 0 0 2 -1
14 -2 0 -1 1 0 1 0 0 -2 -2 2 0 -2 -2 -1 0 1 -2 0 2 1 0 1 0 -2 -1
15 2 -2 1 2 0 2 1 -2 2 -1 2 2 1 -2 -2 1 -1 -2 1 -1 0 0 -1 -1 0 -2
16 0 -1 0 0 0 -2 -2 -1 0 0 0 2 -2 -2 2 -1 2 2 0 0 0 -1 0 -2 0 0
17 -2 0 1 1 -1 -2 0 -1 0 -2 -1 -2 -1 1 -1 2 -2 2 1 0 2 0 0 2 0 -1
18 1 -2 2 2 0 0 1 0 1 0 0 0 0 1 0 -2 2 -2 0 2 0 2 0 2 0 -1
19 0 2 -1 -2 -2 1 -2 1 -2 -1 -1 0 1 0 1 -2 2 0 2 2 -1 0 1 1 -1 -2
20 2 -2 1 1 -2 0 -2 -1 0 -2 -2 1 2 -1 0 -2 2 1 -2 2 -1 -2 0 0 0 2

Event X2 X4 X5 X10 Rebels Terrorists Criminals Military Government Foreign
1 0.077 -0.094 0.363 1.439 0.102 0.083 0.272 0.083 0.437 0.022
2 0.99 0.744 0.082 0.247 0.108 0.053 0.184 0.082 0.545 0.029
3 -0.776 -0.028 -1.009 -0.869 0.066 0.041 0.168 0.062 0.635 0.028
4 -0.573 -0.444 -0.076 0.022 0.081 0.057 0.229 0.069 0.538 0.026
5 -1.287 -0.285 -0.937 -0.591 0.063 0.048 0.196 0.062 0.605 0.025
6 0.71 -0.257 0.38 0.922 0.112 0.066 0.231 0.082 0.482 0.026
7 -0.512 -0.218 -0.383 -0.375 0.077 0.049 0.199 0.067 0.58 0.028
8 -0.746 0.158 -0.905 0.38 0.076 0.063 0.211 0.074 0.554 0.023
9 -0.044 -0.608 -0.499 -0.497 0.083 0.043 0.178 0.066 0.601 0.03
10 -1.275 0.287 -0.891 -0.064 0.066 0.059 0.213 0.068 0.57 0.023
11 1.077 0.661 0.335 0.347 0.112 0.055 0.193 0.082 0.528 0.029
12 -0.109 0.347 -0.239 0.047 0.086 0.055 0.203 0.074 0.555 0.027
13 0.53 0.275 -0.768 -0.324 0.089 0.043 0.154 0.073 0.612 0.029
14 -0.804 -0.069 -0.057 0.446 0.08 0.068 0.252 0.072 0.505 0.023
15 -0.914 -1.08 -0.841 -0.009 0.073 0.054 0.212 0.066 0.57 0.025
16 -1.037 -0.105 -0.337 0.059 0.073 0.061 0.234 0.068 0.539 0.024
17 0.122 0.166 -1.625 -0.97 0.071 0.033 0.123 0.064 0.68 0.029
18 -0.99 0.697 0.477 0.923 0.08 0.085 0.297 0.076 0.442 0.021
19 0.334 0.566 0.16 0.668 0.1 0.066 0.223 0.082 0.504 0.025
20 -1.324 -0.563 0.046 0.932 0.075 0.082 0.299 0.071 0.453 0.02
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APPENDIX E. R CODE FOR FACTOR ANALYSIS AND REGRESSION 
MODELS 

There are five distinct pieces of R code that follow, one each for the recoding/imputation 

of the data, the factor analysis, recoding the response variables, building the models, and a script 

that will manipulate the data as well as generate plots for the use case implementation. 

I. Data Recode and Imputation 
## Script for recoding and imputing the 2010 Sahel (Nigeria) Survey Data 
## This program will output 3 files: 
## 1. A recoded data set according to the recode functions listed below 
## 2. A recoded and imputed data set using hot decking 
## 3. A final data set with only the variables (questions) necessary for factor analysis 
 
## Read in .sav file 
library(foreign) 
 
nig10 <- read.spss("C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/Nigeria_2010_weights.sav",use.value.labels=TRUE,max.value.labels=Inf, data.frame=TRUE) 
 
# Replace ":" in d17 with "-" 
nig10$d17 <- gsub(":","-",nig10$d17) 
 
# Delete BLANK1-BLANK15,"hh_1-7_1-12","reas1-12","length_int",and "sexagewgt" 
data <- nig10[,-
c(11,18:101,151,196,199,228,230,235,237,240,242,265,288,333,345,347,358:369,370,375)] 
 
## Recoding scheme based off of number of points in Likert Scale (-2 to 2, "Don't Know = 0") 
 
library(car) # package for recoding 
 
# 1. Two point questions where "Yes" is most positive (Don't Know = 0) 
recodeTwoPos <- function(x){ 
 recode(x, 
  '"Yes"= 2;  
  "No"= -2; 
  "The government serves the interests of all people equally" = 2;  
  "The government favors certain groups over others"= -2; 
  "Does not affect the amount of crime in society"= 2; 
  "Reduces crime in society"= -2; 
  "Promotes harsh criminal punishments"= 2; 
  "Promotes fair criminal punishments"= -2; 
  "Does not affect the amount of corruption in society"= 2; 
  "Reduces corruption in society"= -2; 
  "Denies women rights"= 2; 
  "Denies women\'s rights"= 2; 
  "Protects women"= -2; 
  "Protects women\'s rights"= -2; 
  "Does not treat women as equals to men"= 2; 
  "Does not treat women  as equals to men"= 2; 
  "Treats women as equals to men"= -2; 
  "Treats women as equals to men"= -2; 
  "Non-Muslims in Nigeria should be free to worship in their own way"= 2; 

"Non-Muslims in [COUNTRY] should be free to worship in their own way."= 2; 
"Non-Muslims in Nigeria should not be free to worship in their own way"= -2; 
"Non-Muslims in [COUNTRY] should not be able to worship in their own way"= -2; 

"Islam teaches people to deal with non-believers with cooperation and understanding"= 2; 
"Islam teaches people to deal with nonbelievers with cooperation and understanding"= 2; 
"Islam teaches people to deal with non-believers with confrontation and struggle"= -2; 
"Islam teaches people to deal with nonbelievers with confrontation and struggle."= -2;  

  "Non-Muslim and Muslim cultures can peacefully exist together" = 2; 
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  "Non-Muslim and Muslim cultures can peacefully exist together."= 2; 
  "War between Non-Muslim and Muslim cultures is inevitable"= -2; 
  "War between Non-Muslim and Muslim cultures is inevitable."= -2; 

"European/American culture is not a threat to traditional Muslim values"= 2; 
"European/American culture is not a threat to traditional Muslim values."= 2; 
"European/American culture is a threat to traditional Muslim values"= -2; 
"European/American culture is a threat to traditional Muslim values."= -2; 

  "Muslims who live in France are free to practice Islam"= 2; 
  "Muslims who live in France are free to practice Islam."= 2; 
  "Muslims who live in France cannot freely practice Islam"= -2; 
  "Muslims who live in France cannot freely practice Islam."= -2; 
  "Muslims who live in the United States are free to practice Islam"= 2; 

"Muslims who live in the United States of America are free to practice Islam."= 2; 
"Muslims who live in the United States cannot freely practice Islam"= -2; 

"Muslims who live in the United States of America cannot freely practice Islam."= -2; 
  "Muslims are treated fairly in the world today"= 2; 
  "Muslims are treated fairly in the world today."= 2; 
  "Muslims are being oppressed in the world today"= -2; 
  "Muslims are being oppressed in the world today."= -2;  
"The office of the president should be held by the person most capable regardless of their 
regional origin"= 2; 
"The office of the president should be alternately held by a notherner and a southerner"= -2;  
  "Marabouts sending young boys into the street is a form of exploitation."= 2; 
"Marabouts sending young boys into the street is a necessary part of their religious education."= 
-2; 
  "Don\'t know" = 0; 
  "Don\'t Know" = 0; 
  "Dont know"= 0; 
  "DK"= 0; 
  "No answer"= NA; 
  "No response"= NA; 
  "No repsonse"= NA;  
  "No Response"= NA; 
  "NR"= NA; ', 
   as.factor.result=FALSE) 
} 
 
# 2. Two point questions where "Yes" is most positive (Don't Know = NA) 
recodeTwoPos1 <- function(x){ 
 recode(x, 
  '"Yes"= 2;  
  "No"= -2; 
  "The government serves the interests of all people equally" = 2;  
  "The government favors certain groups over others"= -2; 
  "Does not affect the amount of crime in society"= 2; 
  "Reduces crime in society"= -2; 
  "Promotes harsh criminal punishments"= 2; 
  "Promotes fair criminal punishments"= -2; 
  "Does not affect the amount of corruption in society"= 2; 
  "Reduces corruption in society"= -2; 
  "Denies women rights"= 2; 
  "Denies women\'s rights"= 2; 
  "Protects women"= -2; 
  "Protects women\'s rights"= -2; 
  "Does not treat women as equals to men"= 2; 
  "Does not treat women  as equals to men"= 2; 
  "Treats women as equals to men"= -2; 
  "Treats women as equals to men"= -2; 
  "Non-Muslims in Nigeria should be free to worship in their own way"= 2; 

"Non-Muslims in [COUNTRY] should be free to worship in their own way."= 2; 
"Non-Muslims in Nigeria should not be free to worship in their own way"= -2; 
"Non-Muslims in [COUNTRY] should not be able to worship in their own way"= -2; 

"Islam teaches people to deal with non-believers with cooperation and understanding"= 2; 
"Islam teaches people to deal with nonbelievers with cooperation and understanding"= 2; 
"Islam teaches people to deal with non-believers with confrontation and struggle"= -2; 
"Islam teaches people to deal with nonbelievers with confrontation and struggle."= -2;  

  "Non-Muslim and Muslim cultures can peacefully exist together" = 2; 
  "Non-Muslim and Muslim cultures can peacefully exist together."= 2; 
  "War between Non-Muslim and Muslim cultures is inevitable"= -2; 
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  "War between Non-Muslim and Muslim cultures is inevitable."= -2; 
"European/American culture is not a threat to traditional Muslim values"= 2; 
"European/American culture is not a threat to traditional Muslim values."= 2; 
"European/American culture is a threat to traditional Muslim values"= -2; 
"European/American culture is a threat to traditional Muslim values."= -2; 

  "Muslims who live in France are free to practice Islam"= 2; 
  "Muslims who live in France are free to practice Islam."= 2; 
  "Muslims who live in France cannot freely practice Islam"= -2; 
  "Muslims who live in France cannot freely practice Islam."= -2; 
  "Muslims who live in the United States are free to practice Islam"= 2; 

"Muslims who live in the United States of America are free to practice Islam."= 2; 
"Muslims who live in the United States cannot freely practice Islam"= -2; 

"Muslims who live in the United States of America cannot freely practice Islam."= -2; 
  "Muslims are treated fairly in the world today"= 2; 
  "Muslims are treated fairly in the world today."= 2; 
  "Muslims are being oppressed in the world today"= -2; 
  "Muslims are being oppressed in the world today."= -2;  
"The office of the president should be held by the person most capable regardless of their 
regional origin"= 2; 
"The office of the president should be alternately held by a notherner and a southerner"= -2;  
  "Marabouts sending young boys into the street is a form of exploitation."= 2; 
"Marabouts sending young boys into the street is a necessary part of their religious education."= 
-2; 
  "Don\'t know" = NA; 
  "Don\'t Know" = NA; 
  "Dont know"= NA; 
  "DK"= NA; 
  "No answer"= NA; 
  "No response"= NA; 
  "No repsonse"= NA;  
  "No Response"= NA; 
  "NR"= NA; ', 
   as.factor.result=FALSE) 
} 
 
# 3. Two point questions where "Yes" is most negative ("No" and "Oppose" is positive, Don't Know 
= 0) 
recodeTwoNeg <- function(x){ 
 recode(x, 
  '"Yes"= -2;  
  "No"= 2;  
  "Oppose"= 2; 
  "Support"= -2; 
  "Justified"= -2; 
  "Not Justified"= 2; 
  "Don\'t know" = 0; 
  "Don\'t Know" = 0; 
  "Dont know"= 0; 
  "DK"= 0; 
  "No answer"= NA; 
  "No response"= NA; 
  "No Response"= NA; 
  "No repsonse"= NA;  
  "NR"= NA; ', 
   as.factor.result=FALSE) 
} 
 
# 4. Two point questions where "Yes" is most negative ("No" and "Oppose" is positive, Don't Know 
= NA) 
recodeTwoNeg1<- function(x){ 
 recode(x, 
  '"Yes"= -2;  
  "No"= 2;  
  "Oppose"= 2; 
  "Support"= -2; 
  "Justified"= -2; 
  "Not Justified"= 2; 
  "Don\'t know" = NA; 
  "Don\'t Know" = NA; 



 65 

  "Dont know"= NA; 
  "DK"= NA; 
  "No answer"= NA; 
  "No response"= NA; 
  "No Response"= NA; 
  "No repsonse"= NA;  
  "NR"= NA; ', 
   as.factor.result=FALSE) 
} 
 
# 5. Three point questions where "Most" is preferred (positive) 
recodeThreePos <- function(x){ 
 recode(x, 
  '"Improved"= 2;  
  "Stayed the same"=0;  
  "Gotten worse"=-2; 
  "Worsened"=-2; 
  "Government and religion should be kept separate" = 2; 
  "Government and religion should be kept separate."= 2; 
"Our country should remain a secular democracy, but religion should play a greater role in govt"= 
0; 
"Our country should remain a secular democracy, but religion should play a greater role in 
government."=0; 
  "Our country should be governed by religious leaders"= -2; 
  "Our country should be governed by religious leaders." = -2; 
  "Our country should be governed by civil law" =2; 
  "Our country should be governed by civil law." =2; 

"Our country should be gvoerned by a combination of civil and religious law"= 0; 
"Our country should be governed by a combination of civil and religious law."=0; 

  "Religious laws should govern all spheres of life"= -2; 
  "Jihad is an inward personal and moral struggle"= 2; 
  "Jihad is both"= 0; 
  "Jihad is taking up arms against enemies of Islam"= -2; 
  "The U.S is engaged to fight terrorism"= 2; 
  "The U.S. is engaged to fight terrorism"= 2; 
  "Both"= 0; 
  "None"= 0; 
  "The U.S. is engaged to fight Islam"= -2; 
  "Dont know"= NA;  
  "No response"= NA; 
  "No repsonse"= NA;  
  "No answer"= NA;  
  "Dont know"= NA; 
  "Don\'t know"= NA; 
  "Don\'t Know"= NA; 
  "No Response"= NA;  
  "No response"= NA; 
  "No Response"= NA;  
  "No answer"= NA;', 
   as.factor.result=FALSE) 
} 
 
# 6. Three point questions where "Most" is least preferred (negative) 
recodeThreeNeg <- function(x){ 
 recode(x, 
  '"Positive influence"= -2;  
  "Neutral influence"= 0;  
  "Negative influence"= 2; 
  "No influence"= 0;  
  "Don\'t know"= NA;  
  "Dont Know"= NA; 
  "No Response"= NA; 
  "No repsonse"= NA;  
  "No response"= NA; ', 
   as.factor.result=FALSE) 
} 
 
# 7. Four point questions where "Most" is preferred (positive) 
recodeFourPos <- function(x){ 
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 recode(x, 
  '"Never"=-2; 
  "Several times a year"= -1; 
  "Several times a month" = 1; 
  "Several times a week"= 2; 
  "Very safe"= 2;  
  "Fairly safe"= 1;  
  "Not very safe"= -1; 
  "Not safe at all"= -2; 
  "Very satisified"= 2; 
  "Very satisfied"= 2; 
  "Somewhat satisfied"= 1; 
  "Not very satisfied"= -1; 
  "Somewhat frustrated"= -1; 
  "Not at all satisfied"= -2; 
  "Very frustrated"= -2; 
  "Nigeria is not a democracy"= -2; 
  "Very favorable"= 2;  
  "Somewhat favorable"= 1;  
  "Somewhat unfavorable"= -1; 
  "Very unfavorable"= -2; 
  "Very similar"= 2;  
  "Somewhat similar"= 1;  
  "Only a little similar"= -1; 
  "Not similar at all"= -2; 
  "A lot"= 2; 
  "A Lot"= 2;  
  "A fair amount"= 1; 
  "A Fair amount"= 1;  
  "Fair amount"= 1; 
  "A little"= -1; 
  "Not at all"= -2; 
  "No trust at all"= -2; 
  "A lot of confidence"= 2; 
  "A fair amount of confidence"= 1; 
  "Only little confidence"= -1; 
  "Only a little confidence"= -1; 
  "No confidence at all"= -2; 
  "Very stable"= 2; 
  "Somewhat stable"= 1; 
  "Somewhat fragile"= -1; 
  "Very fragile"= -2; 
  "Strongly agree"= 2; 
  "Somewhat agree"= 1; 
  "Somewhat disagree"= -1; 
  "Strongly disagree"= -2; 
  "Strongly approve"= 2; 
  "Somewhat approve"= 1; 
  "Somewhat disapprove"= -1; 
  "Strongly disapprove"= -2; 
  "Very good"= 2; 
  "Somewhat good"= 1; 
  "Somewhat poor"= -1; 
  "Very poor"= -2; 
  "Very good"= 2; 
  "Good"= 1; 
  "Fair"= -1; 
  "Poor"= -2; 
  "Often"= 2; 
  "Sometimes"= 1; 
  "Rarely"= -1; 
  "Never"= -2; 
  "Very easy"= 2; 
  "Somewhat easy"= 1; 
  "Somewhat hard"= -1; 
  "Very hard"= -2; 
  "Very often"= 2; 
  "Fairly often"= 1; 
  "Not very often"= -1; 
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  "Not at all"= -2; 
  "Very important"= 2; 
  "Fairly important"= 1; 
  "Not very important"= -1; 
  "Not at all important"= -2; 
  "Very responsive"= 2; 
  "Somewhat responsive"= 1; 
  "Not very responsive"= -1; 
  "Not at all responsive"= -2; 
  "[COUNTRY]is not a democracy"= NA; 
  "NA"= NA; 
  "DK"= 0;  
  "NR"= NA; 
  "No answer"= NA; 
  "Don\'t know"= 0; 
  "Don\'t Know"= 0; 
  "Dont know"= 0;  
  "No response"= NA; 
  "No response"= NA; 
  "No repsonse"= NA; 
  "No repsonse"= NA;  
  "No Response"= NA; ', 
   as.factor.result=FALSE) 
} 
 
# 8. Four point questions where "Most" is least preferred (negative) 
recodeFourNeg <- function(x){ 
 recode(x, 
  '"Always justified"= -2; 
  "Sometimes justified"= -1; 
  "Rarely justified"= 1; 
  "Never justified"= 2; 
  "Strongly agree"= -2;  
  "Somewhat agree"= -1;  
  "Somewhat disagree"= 1; 
  "Strongly disagree"= 2; 
  "Often"= -2; 
  "Sometimes"= -1; 
  "Rarely"= 1; 
  "Never"= 2; 
  "DK"= 0;  
  "NR"= NA; 
  "No answer"= NA; 
  "Don\'t know"= 0; 
  "Don\'t Know"= 0; 
  "Dont know"= 0;  
  "No response"= NA; 
  "No repsonse"= NA;  
  "No Response"= NA; ', 
   as.factor.result=FALSE) 
} 
 
# 9. Five point questions where "Most" is preferred (positive) 
recodeFivePos <- function(x){ 
 recode(x, 
  '"Always"= 2; 
  "Most of every day"= 1; 
  "Only a few hours a day"= 0; 
  "Only a few hours a week"= -1; 
  "Never"= -2; 
  "Upper- Plenty of disposable money"= 2; 
  "Upper middle- Able to purchase most essential goods"= 1; 
  "Lower middle- Able to meet basic needs with some non-essential goods"= -1; 
  "Poor- Able to meet basic needs"= -1; 
  "Very poor- Unable to meet basic needs without charity"= -2;  
  "Plenty of disposable money"= 2; 
  "Able to purchase most non-essential goods"= 1; 
  "Able to meet basic needs with some non-essential goods"= 0; 
  "Able to meet basic needs" = -1; 
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  "Unable to meet basic needs without charity"= -2; 
  "DK"= NA;  
  "NR"= NA; 
  "No answer"= NA; 
  "Don\'t know"= NA; 
  "Don\'t Know"= NA; 
  "Dont know"= NA;  
  "No response"= NA; 
  "No repsonse"= NA;  
  "No Response"= NA; ', 
   as.factor.result=FALSE) 
} 
 
# 10. Five point questions where "Most" is the least preferred (negative) 
recodeFiveNeg <- function(x){ 
 recode(x, 
  '"Increased a lot"= -2; 
  "Increased a little"= -1; 
  "Stayed the same"= 0; 
  "Decreased a little"= 1; 
  "Decrease a lot"= 2; 
  "Increased dramatically"= -2; 
  "Increased slightly" = -1; 
  "Stayed the same"= 0; 
  "Decreased slightly"= 1; 
  "DK"= NA;  
  "NR"= NA; 
  "No answer"= NA; 
  "Don\'t know"= NA; 
  "Don\'t Know"= NA; 
  "Dont know"= NA;  
  "No response"= NA; 
  "No repsonse"= NA;  
  "No Response"= NA; ', 
   as.factor.result=FALSE) 
} 
 
# These are recoded for imputation purposes as the Match.var variable. Others may be included. 
recodeDem <- function(x){ 
 recode(x, 
  '"Christianity"= 1; 
  "Christianity (Catholic, Protestant, Evangelical, etc)"= 1; 
  "Islam"= -1; 
  "Traditional"= 0; 
  "No religion"= 0; 
  "Others"= 0;  
  "Other"= 0; 
  "Judaism"= 0;  
  "Animism"= 0; 
  "Missing" = 0; 
  "No Response"= 0; 
  "No response"= 0; 
  "Don\'t know"= 0; 
  "Male"= 1; 
  "Female"= -1; 
  "Rural"= 1; 
  "Urban"= -1; ', 
   as.factor.result=FALSE) 
} 
 
# Recode Question 47 for model building purposes 
recodeQ47 <- function(x){ 
 recode(x, 
  '"Rebel groups"= 0; 
  "International terrorists"= 1; 
  "Common criminals"= 2; 
  "The military"= 3; 
  "Government officials"= 4; 
  "Foreign country"= 5; 
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  "Other"= NA; 
  "Don\'t know"= NA; 
  "No Response"= NA; ', 
   as.factor.result=FALSE) 
} 
 
# Link each question to specific recode functions and recode 
 
data$urbanrural <- as.numeric(recodeDem(data$urbanrural)) 
data$q5 <- as.numeric(recodeFourPos(data$q5)) 
data$q6 <- as.numeric(recodeFourPos(data$q6)) 
data$q7 <- as.numeric(recodeFourPos(data$q7)) 
data$q8edu <- as.numeric(recodeFourPos(data$q8edu)) 
data$q8hea <- as.numeric(recodeFourPos(data$q8hea)) 
data$q8wat <- as.numeric(recodeFourPos(data$q8wat)) 
data$q8roa <- as.numeric(recodeFourPos(data$q8roa)) 
data$q8ele <- as.numeric(recodeFourPos(data$q8ele)) 
data$q9edu <- as.numeric(recodeThreePos(data$q9edu)) 
data$q9hea <- as.numeric(recodeThreePos(data$q9hea)) 
data$q9wat <- as.numeric(recodeThreePos(data$q9wat)) 
data$q9roa <- as.numeric(recodeThreePos(data$q9roa)) 
data$q9ele <- as.numeric(recodeThreePos(data$q9ele)) 
data$q10 <- as.numeric(recodeTwoPos(data$q10)) 
data$q12uk <- as.numeric(recodeFourPos(data$q12uk)) 
data$q12fr <- as.numeric(recodeFourPos(data$q12fr)) 
data$q12ni <- as.numeric(recodeFourPos(data$q12ni)) 
data$q12ir <- as.numeric(recodeFourPos(data$q12ir)) 
data$q12ch <- as.numeric(recodeFourPos(data$q12ch)) 
data$q14usa <- as.numeric(recodeFourPos(data$q14usa)) 
data$q16so <- as.numeric(recodeFourPos(data$q16so)) 
data$q16li <- as.numeric(recodeFourPos(data$q16li)) 
data$q16sa <- as.numeric(recodeFourPos(data$q16sa)) 
data$q17sa <- as.numeric(recodeFourPos(data$q17sa)) 
data$q17fr <- as.numeric(recodeFourPos(data$q17fr)) 
data$q17ch <- as.numeric(recodeFourPos(data$q17ch)) 
data$q17ir <- as.numeric(recodeFourPos(data$q17ir)) 
data$q17us <- as.numeric(recodeFourPos(data$q17us)) 
data$q21a <- as.numeric(recodeFourPos(data$q21a)) 
data$q21b <- as.numeric(recodeFourPos(data$q21b)) 
data$q21c <- as.numeric(recodeFourPos(data$q21c)) 
data$q21d <- as.numeric(recodeFourPos(data$q21d)) 
data$q21e <- as.numeric(recodeFourPos(data$q21e)) 
data$q21f <- as.numeric(recodeFourPos(data$q21f)) 
data$q21g <- as.numeric(recodeFourPos(data$q21g)) 
data$q21h <- as.numeric(recodeFourPos(data$q21h)) 
data$q22a <- as.numeric(recodeFourPos(data$q22a)) 
data$q22b <- as.numeric(recodeFourPos(data$q22b)) 
data$q22c <- as.numeric(recodeFourPos(data$q22c)) 
data$q22d <- as.numeric(recodeFourPos(data$q22d)) 
data$q22e <- as.numeric(recodeFourPos(data$q22e)) 
data$q22f <- as.numeric(recodeFourPos(data$q22f)) 
data$q22g <- as.numeric(recodeFourPos(data$q22g)) 
data$q22h <- as.numeric(recodeFourPos(data$q22h))  
data$q23a <- as.numeric(recodeFourPos(data$q23a)) 
data$q23b <- as.numeric(recodeFourPos(data$q23b)) 
data$q23c <- as.numeric(recodeFourPos(data$q23c)) 
data$q23d <- as.numeric(recodeFourPos(data$q23d)) 
data$q23e <- as.numeric(recodeFourPos(data$q23e)) 
data$q23f <- as.numeric(recodeFourPos(data$q23f)) 
data$q25a <- as.numeric(recodeFourNeg(data$q25a)) 
data$q25b <- as.numeric(recodeFourNeg(data$q25b)) 
data$q25c <- as.numeric(recodeFourNeg(data$q25c)) 
data$d5a <- as.numeric(recodeDem(data$d5a)) 
data$q26a <- as.numeric(recodeFourPos(data$q26a)) 
data$q26b <- as.numeric(recodeFourPos(data$q26b)) 
data$q26c <- as.numeric(recodeFourPos(data$q26c)) 
data$q26d <- as.numeric(recodeFourPos(data$q26d)) 
data$q26e <- as.numeric(recodeFourPos(data$q26e)) 
data$q27a <- as.numeric(recodeTwoPos1(data$q27a)) 
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data$q27b <- as.numeric(recodeTwoPos1(data$q27b)) 
data$q27c <- as.numeric(recodeTwoPos1(data$q27c)) 
data$q27d <- as.numeric(recodeTwoPos1(data$q27d)) 
data$q28 <- as.numeric(recodeThreePos(data$q28)) 
data$q29a <- as.numeric(recodeTwoPos(data$q29a)) 
data$q29b <- as.numeric(recodeTwoPos(data$q29b)) 
data$q29c <- as.numeric(recodeTwoPos(data$q29c)) 
data$q29d <- as.numeric(recodeTwoPos(data$q29d)) 
data$q30 <- as.numeric(recodeThreePos(data$q30)) 
data$q31a <- as.numeric(recodeThreePos(data$q31a)) 
data$q31b <- as.numeric(recodeThreePos(data$q31b)) 
data$q32a <- as.numeric(recodeTwoPos(data$q32a)) 
data$q32b <- as.numeric(recodeTwoPos(data$q32b)) 
data$q32c <- as.numeric(recodeTwoPos(data$q32c)) 
data$q32d <- as.numeric(recodeTwoPos(data$q32d)) 
data$q32e <- as.numeric(recodeTwoPos(data$q32e)) 
data$q33 <- as.numeric(recodeTwoNeg(data$q33)) 
data$q34a <- as.numeric(recodeTwoPos(data$q34a)) 
data$q34b <- as.numeric(recodeTwoPos(data$q34b)) 
data$q36a <- as.numeric(recodeFourNeg(data$q36a)) 
data$q36b <- as.numeric(recodeFourNeg(data$q36b)) 
data$q37a <- as.numeric(recodeTwoPos(data$q37a)) 
data$q37b <- as.numeric(recodeTwoPos(data$q37b)) 
data$q37c <- as.numeric(recodeTwoPos(data$q37c)) 
data$q37d <- as.numeric(recodeTwoPos(data$q37d)) 
data$q37e <- as.numeric(recodeTwoPos(data$q37e)) 
data$q40 <- as.numeric(recodeFourPos(data$q40)) 
data$q41a <- as.numeric(recodeTwoPos1(data$q41a))# Don't know=0 here because it is not an opinion 
data$q42 <- as.numeric(recodeFourPos(data$q42)) 
data$q44 <- as.numeric(recodeFourPos(data$q44)) 
data$q44na <- as.numeric(recodeTwoPos(data$q44na)) 
data$q45 <- as.numeric(recodeFourPos(data$q45)) 
data$q47 <- as.numeric(recodeQ47(data$q47))  
data$q48a <- as.numeric(recodeFourPos(data$q48a)) 
data$q48b <- as.numeric(recodeFourPos(data$q48b)) 
data$q48c <- as.numeric(recodeFourPos(data$q48c)) 
data$q48d <- as.numeric(recodeFourPos(data$q48d)) 
data$q48e <- as.numeric(recodeFourPos(data$q48e)) 
data$q48f <- as.numeric(recodeFourPos(data$q48f)) 
data$q49pr <- as.numeric(recodeFourPos(data$q49pr)) 
data$q49pm <- as.numeric(recodeFourPos(data$q49pm)) 
data$q49na <- as.numeric(recodeFourPos(data$q49na)) 
data$q49pp <- as.numeric(recodeFourPos(data$q49pp)) 
data$q49af <- as.numeric(recodeFourPos(data$q49af)) 
data$q49cj <- as.numeric(recodeFourPos(data$q49cj)) 
data$q49rl <- as.numeric(recodeFourPos(data$q49rl)) 
data$q49lp <- as.numeric(recodeFourPos(data$q49lp)) 
data$q49lg <- as.numeric(recodeFourPos(data$q49lg)) 
data$q50 <- as.numeric(recodeFourPos(data$q50)) 
data$q52 <- as.numeric(recodeFourPos(data$q52))  
data$q56b <- as.numeric(recodeThreePos(data$q56b)) 
data$q57 <- as.numeric(recodeTwoNeg(data$q57)) 
data$q58a <- as.numeric(recodeTwoNeg(data$q58a)) 
data$q58b <- as.numeric(recodeTwoNeg(data$q58b)) 
data$q58c <- as.numeric(recodeTwoNeg(data$q58c)) 
data$q59a <- as.numeric(recodeFourPos(data$q59a)) 
data$q59b <- as.numeric(recodeFourNeg(data$q59b)) 
data$q59c <- as.numeric(recodeFourNeg(data$q59c)) 
data$q59d <- as.numeric(recodeFourPos(data$q59d)) 
data$q60 <- as.numeric(recodeThreePos(data$q60)) 
data$q62a <- as.numeric(recodeFourPos(data$q62a)) #It’s opinions; can't determine a pos or neg 
data$q62b <- as.numeric(recodeFourPos(data$q62b)) 
data$q62c <- as.numeric(recodeFourPos(data$q62c)) 
data$q62d <- as.numeric(recodeFourPos(data$q62d)) 
data$d0 <- as.numeric(recodeDem(data$d0)) 
data$d13 <- as.numeric(recodeFourPos(data$d13))  # conditional question 
data$d15 <- as.numeric(recodeThreePos(data$d15)) 
data$d16 <- as.numeric(recodeFiveNeg(data$d16)) 
data$d17 <- as.numeric(recodeFivePos(data$d17)) 
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data$d21 <- as.numeric(recodeFivePos(data$d21)) 
data$d22 <- as.numeric(recodeTwoPos1(data$d22)) # Don't Know = NA. No cell phone? 
data$d23 <- as.numeric(recodeFourPos(data$d23)) 
data$d24a <- as.numeric(recodeTwoPos1(data$d24a)) # Don't Know = NA 
data$d24b <- as.numeric(recodeTwoPos1(data$d24b)) 
data$d24c <- as.numeric(recodeTwoPos1(data$d24c)) 
data$d24d <- as.numeric(recodeTwoPos1(data$d24d)) 
data$d24e <- as.numeric(recodeTwoNeg1(data$d24e)) 
data$d26a <- as.numeric(recodeFourPos(data$d26a)) 
data$d26b <- as.numeric(recodeFourPos(data$d26b)) 
data$d30 <- as.numeric(recodeFourPos(data$d30)) 
 
write.table(data,"C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/Recode_10.csv",sep=",",col.names=TRUE,row.names=FALSE,quote=TRUE,na="NA") 
 
 
## Imputation Using Hotdeck Method 
 
library(StatMatch) 
 
imputeHD <- function(Question,Dframe,Donor.Class,Match.vars){ 
 
Data.rec <- Dframe[is.na(Dframe[,Question])==TRUE,]  
Data.rec <- subset(Data.rec,select=-get(Question))  
 
Data.don <- Dframe[is.na(Dframe[,Question])==FALSE,]  
 
imp.RAND <- RANDwNND.hotdeck(data.rec=Data.rec,data.don=Data.don,match.vars=Match.vars, 
  don.class=Donor.Class,dist.fun="Manhattan") 
 
Data.rec.imp <- 
create.fused(data.rec=Data.rec,data.don=Data.don,mtc.ids=imp.RAND$mtc.ids,z.vars=Question) 
 
final <- rbind(Data.rec.imp,Data.don) 
return(final) 
} 
 
HD.loop <- function (Dframe, Donor.Class, Match.vars, Question) { 
 empty <- "False" 
 while (empty == "False"){  
  final <- imputeHD (Question[1], Dframe, Donor.Class, Match.vars) 
  Question <- Question[-1]  # remove that question FIFO 
  Dframe <- final  # update Dframe with new data 
  if (length(Question) < 1){  
   empty <- "True" 
  } 
 } 
 final   
} 
 
Match.vars <- c("d5a","d0","urbanrural")  
data$state <- as.factor(data$state) # state must be a factor 
Donor.Class <- c("state") #state is the donor class 
Dframe <- data 
Question <- c("q5","q6","q7","q8edu", "q8hea", "q8wat", "q8roa", "q8ele", "q9edu", "q9hea", 
"q9wat","q9roa","q9ele", "q10", "q12uk", "q12fr", "q12ni", "q12ir", "q12ch", "q14usa", 
"q16so", "q16li", "q16sa", "q17sa", "q17fr", "q17ch", "q17ir", "q17us", "q21a", "q21b", "q21c", 
"q21d", "q21e", "q21f", "q21g", "q21h", "q22a","q22b", "q22c", "q22d", "q22e", "q22f", "q22g", 
"q22h","q23a", "q23b", "q23c", "q23d", "q23e", "q23f", "q25a", "q25b", "q25c", "q26a","q26b", 
"q26c","q26d", "q26e", "q27a", "q27b", "q27c", "q27d", "q28", "q29a", "q29b", "q29c", "q29d", 
"q30","q31a", "q31b", "q32a", "q32b", "q32c", "q32d", "q32e", "q33", "q34a", "q34b", "q36a", 
"q36b","q37a", "q37b", "q37c", "q37d", "q40", "q41a", "q42", "q44", "q44na", "q45", "q47", 
"q48a", "q48b", "q48c","q48d", "q48e", "q48f", "q49pr", "q49pm", "q49na", "q49pp", "q49af", 
"q49cj","q49rl", "q49lp", "q49lg","q50", "q52", "q56b", "q57", "q58a", "q58b", "q58c", "q59a", 
"q59b", "q59c", "q59d", "q60", "q62a","q62b", "q62c", "q62d", "d13", "d15", "d16", "d17", "d21", 
"d22", "d23", "d24a", "d24b", "d24c", "d24d","d24e", "d26a", "d26b", "d30") 
 
rec.imp.data <- HD.loop(Dframe,Donor.Class,Match.vars,Question) 
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write.table(rec.imp.data,"C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/Rec_Imp_10.csv",sep=",",col.names=TRUE,row.names=FALSE,quote=TRUE,na="NA") 
 
# Delete all variables except those we want to create factors with (taken from the Questions) 
final.data <- rec.imp.data[,c("q5","q6","q7","q8edu", "q8hea", "q8wat", "q8roa", "q8ele", 
"q9edu", "q9hea","q9wat","q9roa","q9ele", "q10", "q12uk", "q12fr", "q12ni", "q12ir", "q12ch", 
"q14usa","q16so", "q16li", "q16sa", "q17sa", "q17fr", "q17ch", "q17ir", "q17us", "q21a", "q21b", 
"q21c","q21d", "q21e", "q21f", "q21g", "q21h", "q22a","q22b", "q22c", "q22d", "q22e", "q22f", 
"q22g", "q22h","q23a", "q23b", "q23c", "q23d", "q23e", "q23f", "q25a", "q25b", "q25c", 
"q26a","q26b", "q26c","q26d", "q26e", "q27a", "q27b", "q27c", "q27d", "q28", "q29a", "q29b", 
"q29c", "q29d", "q30","q31a", "q31b", "q32a", "q32b", "q32c", "q32d", "q32e", "q33", "q34a", 
"q34b", "q36a", "q36b","q37a", "q37b", "q37c", "q37d", "q40", "q41a", "q42", "q44", "q44na", 
"q45", "q48a", "q48b", "q48c","q48d", "q48e", "q48f", "q49pr", "q49pm", "q49na", "q49pp", 
"q49af", "q49cj","q49rl", "q49lp", "q49lg","q50", "q52", "q56b", "q57", "q58a", "q58b", "q58c", 
"q59a", "q59b", "q59c", "q59d", "q60", "q62a","q62b", "q62c", "q62d", "d13", "d15", "d16", "d17", 
"d21", "d22", "d23", "d24a", "d24b", "d24c", "d24d","d24e", "d26a", "d26b", "d30")]  
 
# Check to see if there are any missing values remaining 
for (i in 1:ncol(final.data)) { 
 check <- sum(is.na(final.data[,i])) 
 # show(check) 
} 
sum(check) 
 
write.table(final.data,"C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/Final_10.csv",sep=",",col.names=TRUE,row.names=FALSE,quote=TRUE,na="NA") 

 

 II. Factor Analysis 
## Script for conducting Factor Analysis on the 2010 Sahel (Nigeria) Survey Data 
# Function finds optimal number of factors, forms a matrix of the factor loadings as the output. 
# Prints out the optimal number of factors used based off of eigenvalues. 
# Prints out the factor matrix with loadings > 0.4 or < -0.4. 
# Prints out the variable names by factor as well as the factor names. 
# Prints the % of variance the factor will explain via eigenvalues. 
# Modifies the loading matrix by deleting factors that are n/a. 
# Calculates the matrix of factor scores. 
# Scales the factor score matrix appropriately to values between -2 and 2. 
 
final.data <- read.csv("C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel Survey/Final_10.csv") 
 
factorNames <- c("1. Sharia Law", "2. U.S. Assist to Nigeria", "3. China Assist to Nigeria", "4. 
Social & Essential Services","5. Trust in Gov Agencies", "6. External Security", "7. General 
Trust", "8. Non-West Countries", "9. Local and National Freedom","10. Democracy", "11. Others 
Values", "12. Daily Life Acceptance", "13. Use of Violence","14. Terrorism Enablers", "15. Family 
and Friends", "16. Civic Duty", "17. Attacks on U.S.","18. Discussion of U.S.", "19. 
Electricity", "20. Western Countries", "21. Trust in Policy Makers","22. Religious Freedom in the 
West", "23. Religious Intolerance", "24. Civility", "25. Policy and Law","26. Roads", "27. None", 
"28. None", "29. None") 
 
initial.factor.analysis <- function(data,num){ 
  
## Find the optimal number of factors for a field of data 
 ev <- eigen(cor(data)) 
 if(num!=0) { 
  num <- num 
 } 
 else { 
  num <- length(ev$values[ev$values > 1]) 
 } 
  
## Conduct factor analysis 
 fact <- factanal(data,factors=num,rotation="varimax") 
  
## Convert the factor loadings to a matrix and name the factors 
 fa.mat <- numeric(0) 
 for(i in 1:num){ 
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  fake.fac.load <- fact$loadings[,i] 
  fake.fac.load[fact$loadings[,i] < 0.4 & (fact$loadings[,i] > -0.4)] <- 0 
  fa.mat <- cbind(fa.mat, fake.fac.load)  
 } 
 colnames(fa.mat) <- c() 
 rownames(fa.mat) <- c() 
 rownames(fa.mat) <- c(colnames(data)) 
 colnames(fa.mat) <- colnames(fa.mat, do.NULL= FALSE, prefix = "Factor.") 
 fa.mat # matrix with loadings > 0.4 or < -0.4 
  
## Calculate the variance of each variable 
 
 i.j.MatrixLoc <- which(fa.mat!=0, arr.ind=TRUE)  
 z <- tapply (i.j.MatrixLoc[,1], i.j.MatrixLoc[,2],  
   function (x) sum (ev$values[x]))/length(ev$values) 
 z <- as.matrix(z) 
 dim(z) <- length(z) 
 rownames(z) <- rownames(z, do.NULL= FALSE, prefix = "Factor.") 
  
## Print the Output 
 
cat("The number of factors (based off of eigen values or given) is: ", num, "\n", 
sep="",file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel Survey/Data10FactorOutput.txt", 
append=FALSE) 
cat("\n","The number of relevent factors is: ",length(z),"\n", sep="", 
file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel Survey/Data10FactorOutput.txt", append=TRUE) 
cat("\n","The variables per factor are: ", "\n","=================================", 
sep="",file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel Survey/Data10FactorOutput.txt", 
append=TRUE) 
 
 x <- numeric(0) 
 for(i in 1:ncol(fa.mat)){ 
  f <- rownames(fa.mat)[which(fa.mat[,i]!=0)] 
  x <- fa.mat[which(fa.mat[,i]!=0),i] 
  x <- as.matrix(x) 
  rownames(f) <- c(colnames(fa.mat[,i])) 
  colnames(x) <- c(colnames(fa.mat[,i])) 
 
cat("\n","Factor",i,"= ", sep=" ", 
file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel Survey/Data10FactorOutput.txt", append=TRUE) 
cat(round(x,4), sep=", ", file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/Data10FactorOutput.txt", append=TRUE) 
cat("\n","Factor",i,"= ", sep=" ",file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/Data10FactorOutput.txt", append=TRUE) 
cat(f, sep=", ", file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/Data10FactorOutput.txt", append=TRUE) 
cat("\n","---------------------------------------------------------------", "\n", sep="", 
file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel Survey/Data10FactorOutput.txt", append=TRUE) 
} 
cat("\n","---------------------------------------------------------------","\n","\n","The 
variance impact of each factor is in % : ", "\n", 
"==================================================","\n", 
sep="",file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel Survey/Data10FactorOutput.txt", 
append=TRUE) 
 
write.table(round(z,4)*100,"C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/Data10FactorOutput.txt", append=TRUE,sep="= ", col.names=FALSE, row.names=TRUE, 
quote=FALSE, na="NA") 
} 
 
initial.factor.analysis(final.data,29) 
 
factor.analysis <- function(data,num,name){ 
 
 fact <- factanal(data,factors=num,rotation="varimax") 
  
## Convert the factor loadings to a matrix and name the factors 
 fa.mat <- numeric(0) 
 for(i in 1:num){ 
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  fake.fac.load <- fact$loadings[,i] 
  fake.fac.load[fact$loadings[,i] < 0.4 & (fact$loadings[,i] > -0.4)] <- 0 
  fa.mat <- cbind(fa.mat, fake.fac.load) # builds a matrix of factors  
 } 
 colnames(fa.mat) <- c() 
 rownames(fa.mat) <- c() 
 rownames(fa.mat) <- c(colnames(data)) 
 colnames(fa.mat) <- colnames(fa.mat, do.NULL= FALSE, prefix = "Factor.") 
 fa.mat # matrix with loadings > 0.4 or < -0.4 
  
 if (is.na(name)==FALSE){ 
  colnames(fa.mat)<- c(name) 
  return(fa.mat) 
 } 
 else{ 
 return(fa.mat) 
 } 
} 
 
Nig.factors <- factor.analysis(final.data,29,factorNames) 
 
## Modify factors & Create Matrix of Factor Scores 
 
Nig.factors <- Nig.factors[,-c(27,28,29)] # delete factors 27, 28, 29 
Nig.factors[24,8] <- 0 # delete q17sa in factor 8 
Nig.factors[27,8] <- 0 # delete q17ir in factor 8 
 
final.data <- as.matrix(final.data) 
 
factor.scores <- data.frame(final.data%*%Nig.factors) 
 
## Scale factor scores by dividing by factor loading sums to get scores between -2 and 2 
 
loadSum <- colSums(data.frame(Nig.factors)) 
factor.scores <- apply(factor.scores,1,function(x)x/loadSum) 
factor.scores <- data.frame(t(factor.scores)) 
 
write.table(factor.scores,"C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/FactorScores_10.csv",sep=",",col.names=TRUE,row.names=FALSE,quote=TRUE,na="NA") 
 

 III. Recode Response Variables 
## Code for recoding response variables 
 
library(car) # package for recoding 
 
demoVar <- read.csv("C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/Rec_Imp_10.csv",header=TRUE) 
 
## Questions to add in the model and corresponding recoding 
 
Actor <- as.factor(demoVar[,"q47"]) 
Safety <- demoVar[,"d23"] 
Goals <- demoVar[,"q6"] 
Services <- demoVar[,"q7"] 
Equality <- demoVar[,"q10"] 
 
## Combine the data sets into initial states for modeling 
 
model.data <- na.omit(data.frame(cbind(factor.scores,Safety,Goals,Services,Equality))) 

 

 IV. Model Building 
#### Function to iterate regression models IOT pick the best ones 
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library(MASS) 
data.best <- 
data.frame(matrix(rep(0,nrow(model.data)*ncol(model.data)),nrow(model.data),ncol(model.data))) 
names(data.best) <- names(model.data) 
for (i in 1:ncol(model.data)){ 
 reg <- lm(model.data[,i] ~ .,data=model.data[,-c(i)]) 
 reg.step <- stepAIC(reg,scope = list(upper = ~ ., lower = ~ 1),trace=FALSE) 
  if (summary(reg.step)$adj.r.squared > 0.39){ 
   data.best[,i] <- model.data[,i] 
 } 
} 
 
which(colSums(data.best)!=0) 
 
### Building, initializing,& predicting future Issue Stance Scores 
 
## Model Build  
 
rx2 <- lm(X2..U.S..Assist.to.Nigeria ~ . - X4..Social...Essential.Services - 
X5..Trust.in.Gov.Agencies - X10..Democracy,data=model.data) 
rx2.step <- stepAIC(rx2,scope = list(upper = ~ . - X4..Social...Essential.Services - 
X5..Trust.in.Gov.Agencies - X10..Democracy, lower = ~ 1),trace=FALSE) 
summary(rx2.step) 
 
rx4 <- lm(X4..Social...Essential.Services ~ . - X2..U.S..Assist.to.Nigeria - 
X5..Trust.in.Gov.Agencies - X10..Democracy,data=model.data) 
rx4.step <- stepAIC(rx4,scope = list(upper = ~ . - X2..U.S..Assist.to.Nigeria - 
X5..Trust.in.Gov.Agencies - X10..Democracy, lower = ~ 1),trace=FALSE) 
summary(rx4.step) 
 
rx5 <- lm(X5..Trust.in.Gov.Agencies ~ . - X2..U.S..Assist.to.Nigeria - 
X4..Social...Essential.Services - X10..Democracy,data=model.data) 
rx5.step <- stepAIC(rx5,scope = list(upper = ~ . - X2..U.S..Assist.to.Nigeria - 
X4..Social...Essential.Services - X10..Democracy, lower = ~ 1),trace=FALSE) 
summary(rx5.step) 
 
rx10 <- lm(X10..Democracy ~ . - X2..U.S..Assist.to.Nigeria - X4..Social...Essential.Services 
- X5..Trust.in.Gov.Agencies,data=model.data) 
rx10.step <- stepAIC(rx10,scope = list(upper = ~ . - X2..U.S..Assist.to.Nigeria - 
X4..Social...Essential.Services - X5..Trust.in.Gov.Agencies, lower = ~ 1),trace=FALSE) 
summary(rx10.step) 
 
## Generate initial Issue Stance Scores using mean factor scores 
 
intx2 <- intersect(names(coef(rx2.step)),names(model.data)) 
intx4 <- intersect(names(coef(rx4.step)),names(model.data)) 
intx5 <- intersect(names(coef(rx5.step)),names(model.data)) 
intx10 <- intersect(names(coef(rx10.step)),names(model.data)) 
ndx2 <- data.frame(matrix(round(colMeans(model.data[,c(intx2)]),3),1,NROW(intx2),byrow=TRUE)) 
names(ndx2) <- c(intx2) 
ndx4 <- data.frame(matrix(round(colMeans(model.data[,c(intx4)]),3),1,NROW(intx4),byrow=TRUE)) 
names(ndx4) <- c(intx4) 
ndx5 <- data.frame(matrix(round(colMeans(model.data[,c(intx5)]),3),1,NROW(intx5),byrow=TRUE)) 
names(ndx5) <- c(intx5) 
ndx10 <- data.frame(matrix(round(colMeans(model.data[,c(intx10)]),3),1,NROW(intx10),byrow=TRUE)) 
names(ndx10) <- c(intx10) 
 
## Predict inital Issue Stance Scores 
 
nx2 <- data.frame(round(predict(rx2.step,ndx2,type="response"),3)) 
nx4 <- data.frame(round(predict(rx4.step,ndx4,type="response"),3)) 
nx5 <- data.frame(round(predict(rx5.step,ndx5,type="response"),3)) 
nx10 <- data.frame(round(predict(rx10.step,ndx10,type="response"),3)) 
 
## Output initial Issue Stance Score files to excel 
 
library(xlsx) 
names(nx2) <- c("X2_Predict") 
names(nx4) <- c("X4_Predict") 
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names(nx5) <- c("X5_Predict") 
names(nx10) <- c("X10_Predict") 
write.xlsx(nx2,file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="X2_Initial_Issue",row.names=FALSE,append=TRUE) 
write.xlsx(nx4,file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="X4_Initial_Issue",row.names=FALSE,append=TRUE) 
write.xlsx(nx5,file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="X5_Initial_Issue",row.names=FALSE,append=TRUE) 
write.xlsx(nx10,file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="X10_Initial_Issue",row.names=FALSE,append=TRUE) 
 
## Read-in SME input files 
 
pdx2 <- read.xlsx("C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/SME.xlsx",sheetIndex=1,sheetName="X2",as.data.frame=TRUE,header=TRUE,keepFormulas=FALSE) 
pdx2 <- pdx2[,-c(1,2)] 
pdx4 <- read.xlsx("C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/SME.xlsx",sheetIndex=2,sheetName="X4",as.data.frame=TRUE,header=TRUE,keepFormulas=FALSE) 
pdx4 <- pdx4[,-c(1,2)] 
pdx5 <- read.xlsx("C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/SME.xlsx",sheetIndex=3,sheetName="X5",as.data.frame=TRUE,header=TRUE,keepFormulas=FALSE) 
pdx5 <- pdx5[,-c(1,2)] 
pdx10 <- read.xlsx("C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/SME.xlsx",sheetIndex=4,sheetName="X10",as.data.frame=TRUE,header=TRUE,keepFormulas=FALSE) 
pdx10 <- pdx10[,-c(1,2)] 
 
## Predict future Issue Stance Scores based on events 
event <- c(1:20) 
p2 <- data.frame(round(predict(rx2.step,pdx2,type="response"),3)) 
p4 <- data.frame(round(predict(rx4.step,pdx4,type="response"),3)) 
p5 <- data.frame(round(predict(rx5.step,pdx5,type="response"),3)) 
p10 <- data.frame(round(predict(rx10.step,pdx10,type="response"),3)) 
 
px2 <- cbind(event,p2) 
px4 <- cbind(event,p4) 
px5 <- cbind(event,p5) 
px10 <- cbind(event,p10) 
 
## Output predicted Issue Stance Score files to excel 
 
names(px2) <- c("Event","X2_Predict") 
names(px4) <- c("Event","X4_Predict") 
names(px5) <- c("Event","X5_Predict") 
names(px10) <- c("Event","X10_Predict") 
write.xlsx(px2,file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="X2_Predict_Issue",row.names=FALSE,append=TRUE) 
write.xlsx(px4,file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="X4_Predict_Issue",row.names=FALSE,append=TRUE) 
write.xlsx(px5,file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="X5_Predict_Issue",row.names=FALSE,append=TRUE) 
write.xlsx(px10,file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="X10_Predict_Issue",row.names=FALSE,append=TRUE) 
 
### Building, initializing, and predicting future OABs 
 
## Model Build 
 
library(mlogit) 
 
wr.data <- data.frame(cbind(Actor,factor.scores)) 
wr.data <- wr.data[,c(1,3,5,6,11)] 
 
WR <- mlogit.data(wr.data,varying=NULL,choice="Actor",shape="wide") 
 
weight.reg <- mlogit(Actor ~ 1 | X2..U.S..Assist.to.Nigeria + X4..Social...Essential.Services + 
X5..Trust.in.Gov.Agencies + X10..Democracy,data=WR,reflevel="0") 
wsum <- summary(weight.reg) 
 
## Predict Initial OAB Probabilities 
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oab.data <- wr.data[,-c(1)] 
wr <- data.frame(matrix(round(colMeans(oab.data),3),1,4,byrow=TRUE)) 
names(wr) <- names(oab.data) 
 
log0 <- rep(0,1) 
log1 <- wsum$coef[["1:(intercept)"]] + 
wsum$coef[["1:X2..U.S..Assist.to.Nigeria"]]*wr$X2..U.S..Assist.to.Nigeria +  
wsum$coef[["1:X4..Social...Essential.Services"]]*wr$X4..Social...Essential.Services + 
wsum$coef[["1:X5..Trust.in.Gov.Agencies"]]*wr$X5..Trust.in.Gov.Agencies + 
wsum$coef[["1:X10..Democracy"]]*wr$X10..Democracy 
log2 <- wsum$coef[["2:(intercept)"]] + 
wsum$coef[["2:X2..U.S..Assist.to.Nigeria"]]*wr$X2..U.S..Assist.to.Nigeria +  
wsum$coef[["2:X4..Social...Essential.Services"]]*wr$X4..Social...Essential.Services + 
wsum$coef[["2:X5..Trust.in.Gov.Agencies"]]*wr$X5..Trust.in.Gov.Agencies + 
wsum$coef[["2:X10..Democracy"]]*wr$X10..Democracy 
log3 <- wsum$coef[["3:(intercept)"]] + 
wsum$coef[["3:X2..U.S..Assist.to.Nigeria"]]*wr$X2..U.S..Assist.to.Nigeria + 
wsum$coef[["3:X4..Social...Essential.Services"]]*wr$X4..Social...Essential.Services + 
wsum$coef[["3:X5..Trust.in.Gov.Agencies"]]*wr$X5..Trust.in.Gov.Agencies + 
wsum$coef[["3:X10..Democracy"]]*wr$X10..Democracy 
log4 <- wsum$coef[["4:(intercept)"]] + 
wsum$coef[["4:X2..U.S..Assist.to.Nigeria"]]*wr$X2..U.S..Assist.to.Nigeria +  
wsum$coef[["4:X4..Social...Essential.Services"]]*wr$X4..Social...Essential.Services + 
wsum$coef[["4:X5..Trust.in.Gov.Agencies"]]*wr$X5..Trust.in.Gov.Agencies + 
wsum$coef[["4:X10..Democracy"]]*wr$X10..Democracy 
log5 <- wsum$coef[["5:(intercept)"]] + 
wsum$coef[["5:X2..U.S..Assist.to.Nigeria"]]*wr$X2..U.S..Assist.to.Nigeria +  
wsum$coef[["5:X4..Social...Essential.Services"]]*wr$X4..Social...Essential.Services + 
wsum$coef[["5:X5..Trust.in.Gov.Agencies"]]*wr$X5..Trust.in.Gov.Agencies + 
wsum$coef[["5:X10..Democracy"]]*wr$X10..Democracy 
 
logits <- cbind(log0,log1,log2,log3,log4,log5) 
prob <- data.frame(round(exp(logits)/rowSums(exp(logits)),3)) # This is the data frame of 
probabilities 
colnames(prob) <- 
c("Rebel_Groups_Predict","International_Terrorists_Predict","Common_Criminals_Predict", 
"Military_Predict","Government_Predict","Foreign_Countries_Predict") 
 
## Output initial OAB Probability files to excel 
 
names(prob[1]) <- c("Rebel_Groups_Predict") 
names(prob[2]) <- c("International_Terrorists_Predict") 
names(prob[3]) <- c("Common_Criminals_Predict") 
names(prob[4]) <- c("Military_Predict") 
names(prob[5]) <- c("Government_Predict") 
names(prob[6]) <- c("Foreign_Countries_Predict") 
write.xlsx(prob[1],file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="Rebels_Initial_OAB",row.names=FALSE,append=TRUE) 
write.xlsx(prob[2],file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="Terrorists_Initial_OAB",row.names=FALSE,append=TRUE) 
write.xlsx(prob[3],file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="Criminals_Initial_OAB",row.names=FALSE,append=TRUE) 
write.xlsx(prob[4],file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="Military_Initial_OAB",row.names=FALSE,append=TRUE) 
write.xlsx(prob[5],file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="Government_Initial_OAB",row.names=FALSE,append=TRUE) 
write.xlsx(prob[6],file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="ForiegnCountries_Initial_OAB",row.names=FALSE,append=TRUE) 
 
## Predict future OAB Probabilities based on events 
 
pd <- cbind(px2,px4,px5,px10)[,c(2,4,6,8)] 
 
log00 <- rep(0,20) 
log11 <- wsum$coef[["1:(intercept)"]] + wsum$coef[["1:X2..U.S..Assist.to.Nigeria"]]*pd$X2_Predict 
+ wsum$coef[["1:X4..Social...Essential.Services"]]*pd$X4_Predict + 
wsum$coef[["1:X5..Trust.in.Gov.Agencies"]]*pd$X5_Predict + 
wsum$coef[["1:X10..Democracy"]]*pd$X10_Predict 
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log22 <- wsum$coef[["2:(intercept)"]] + wsum$coef[["2:X2..U.S..Assist.to.Nigeria"]]*pd$X2_Predict 
+ wsum$coef[["2:X4..Social...Essential.Services"]]*pd$X4_Predict + 
wsum$coef[["2:X5..Trust.in.Gov.Agencies"]]*pd$X5_Predict + 
wsum$coef[["2:X10..Democracy"]]*pd$X10_Predict 
log33 <- wsum$coef[["3:(intercept)"]] + wsum$coef[["3:X2..U.S..Assist.to.Nigeria"]]*pd$X2_Predict 
+ wsum$coef[["3:X4..Social...Essential.Services"]]*pd$X4_Predict + 
wsum$coef[["3:X5..Trust.in.Gov.Agencies"]]*pd$X5_Predict + 
wsum$coef[["3:X10..Democracy"]]*pd$X10_Predict 
log44 <- wsum$coef[["4:(intercept)"]] + wsum$coef[["4:X2..U.S..Assist.to.Nigeria"]]*pd$X2_Predict 
+ wsum$coef[["4:X4..Social...Essential.Services"]]*pd$X4_Predict + 
wsum$coef[["4:X5..Trust.in.Gov.Agencies"]]*pd$X5_Predict + 
wsum$coef[["4:X10..Democracy"]]*pd$X10_Predict 
log55 <- wsum$coef[["5:(intercept)"]] + wsum$coef[["5:X2..U.S..Assist.to.Nigeria"]]*pd$X2_Predict 
+ wsum$coef[["5:X4..Social...Essential.Services"]]*pd$X4_Predict + 
wsum$coef[["5:X5..Trust.in.Gov.Agencies"]]*pd$X5_Predict + 
wsum$coef[["5:X10..Democracy"]]*pd$X10_Predict 
 
logits1 <- cbind(log00,log11,log22,log33,log44,log55) 
prob1 <- data.frame(round(exp(logits1)/rowSums(exp(logits1)),3)) 
colnames(prob1) <- c("Rebel Groups","International Terrorists","Common 
Criminals","Military","Government","Foreign Countries") 
 
## Output predicted OAB Probability files to excel 
 
poab0 <- data.frame(cbind(event,prob1[,1])) 
poab1 <- data.frame(cbind(event,prob1[,2])) 
poab2 <- data.frame(cbind(event,prob1[,3])) 
poab3 <- data.frame(cbind(event,prob1[,4])) 
poab4 <- data.frame(cbind(event,prob1[,5])) 
poab5 <- data.frame(cbind(event,prob1[,6])) 
names(poab0) <- c("Event","Rebel_Groups_Predict") 
names(poab1) <- c("Event","International_Terrorists_Predict") 
names(poab2) <- c("Event","Common_Criminals_Predict") 
names(poab3) <- c("Event","Military_Predict") 
names(poab4) <- c("Event","Government_Predict") 
names(poab5) <- c("Event","Foreign_Countries_Predict") 
write.xlsx(poab0,file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="Rebels_Predict_OAB",row.names=FALSE,append=TRUE) 
write.xlsx(poab1,file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="Terrorists_Predict_OAB",row.names=FALSE,append=TRUE) 
write.xlsx(poab2,file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="Criminals_Predict_OAB",row.names=FALSE,append=TRUE) 
write.xlsx(poab3,file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="Military_Predict_OAB",row.names=FALSE,append=TRUE) 
write.xlsx(poab4,file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="Government_Predict_OAB",row.names=FALSE,append=TRUE) 
write.xlsx(poab5,file="C:/Users/tmdevean/Desktop/IW TWG/2010 Sahel 
Survey/ALL.xlsx",sheetName="ForeignCountries_Predict_OAB",row.names=FALSE,append=TRUE) 
 

 V. Use Case 
### Example Use Case 
 
time.step <- data.frame(c(1:200)) 
names(time.step) <- c("Time") 
events <- data.frame(sample(1:20,200,replace=T)) 
names(events) <- c("Event") 
 
event.list1 <- merge(cbind(time.step,events),px2) 
event.list2 <- merge(cbind(time.step,events),px4) 
event.list3 <- merge(cbind(time.step,events),px5) 
event.list4 <- merge(cbind(time.step,events),px10) 
event.list5 <- merge(cbind(time.step,events),poab0) 
event.list6 <- merge(cbind(time.step,events),poab1) 
event.list7 <- merge(cbind(time.step,events),poab2) 
event.list8 <- merge(cbind(time.step,events),poab3) 
event.list9 <- merge(cbind(time.step,events),poab4) 
event.list10 <- merge(cbind(time.step,events),poab5) 
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event.list <- 
cbind(event.list1,event.list2,event.list3,event.list4,event.list5,event.list6,event.list7,event.l
ist8,event.list9,event.list10) 
 
event.list <- event.list[,c(1,2,3,6,9,12,15,18,21,24,27,30)] 
 
event.list <- event.list[order(event.list[,"Time"]),] 
event.list <- event.list[,c(2,1,3,4,5,6,7,8,9,10,11,12)] 
 
in.time <- data.frame(c(0)) 
names(in.time) <- c("Time") 
in.event <- data.frame(c(0)) 
names(in.event) <- c("Event") 
 
event.list <- 
rbind(cbind(in.time,in.event,nx2,nx4,nx5,nx10,prob[1],prob[2],prob[3],prob[4],prob[5],prob[6]),ev
ent.list) 
 
## Issue Stance Score Plots 
par(mfrow=c(2,2)) 
plot(event.list$Time,event.list$X2_Predict,type="l",xlab="Time Step",ylim=c(-2,2),ylab="Issue 
Stance Score",main="'U.S. Assistance to Nigeria' Issue Stance Score over 
Time",col="2",col.main="4",font.lab="2",font.main="2") 
lines(lowess(event.list$Time,event.list$X2_Predict,iter=10),lty="dashed",col="139") 
 
plot(event.list$Time,event.list$X4_Predict,type="l",xlab="Time Step",ylim=c(-2,2),ylab="Issue 
Stance Score",main="'Social & Essential Services' Issue Stance Score over 
Time",col="2",col.main="4",font.lab="2",font.main="2") 
lines(lowess(event.list$Time,event.list$X4_Predict,iter=10),lty="dashed",col="139") 
 
plot(event.list$Time,event.list$X5_Predict,type="l",xlab="Time Step",ylim=c(-2,2),ylab="Issue 
Stance Score",main="'Trust in Government Agencies' Issue Stance Score over 
Time",col="2",col.main="4",font.lab="2",font.main="2") 
lines(lowess(event.list$Time,event.list$X5_Predict,iter=10),lty="dashed",col="139") 
 
plot(event.list$Time,event.list$X10_Predict,type="l",xlab="Time Step",ylim=c(-2,2),ylab="Issue 
Stance Score",main="'Democracy' Issue Stance Score over 
Time",col="2",col.main="4",font.lab="2",font.main="2") 
lines(lowess(event.list$Time,event.list$X10_Predict,iter=10),lty="dashed",col="139") 
 
## OAB Probability Plots 
par(mfrow=c(2,3)) 
plot(event.list$Time,event.list$Rebel_Groups_Predict,type="l",xlab="Time 
Step",ylim=c(0.05,0.15),ylab="Probability",main="'Rebel Groups' OAB Probability over 
Time",col="2",col.main="4",font.lab="2",font.main="2") 
lines(lowess(event.list$Time,event.list$Rebel_Groups_Predict,iter=10),lty="dashed",col="139") 
 
plot(event.list$Time,event.list$International_Terrorists_Predict,type="l",xlab="Time 
Step",ylim=c(0,0.1),ylab="Probability",main="'International Terrorists' OAB Probability over 
Time",col="2",col.main="4",font.lab="2",font.main="2") 
lines(lowess(event.list$Time,event.list$International_Terrorists_Predict,iter=10),lty="dashed",co
l="139") 
 
plot(event.list$Time,event.list$Common_Criminals_Predict,type="l",xlab="Time 
Step",ylim=c(0.1,0.3),ylab="Probability",main="'Common Criminals' OAB Probability over 
Time",col="2",col.main="4",font.lab="2",font.main="2") 
lines(lowess(event.list$Time,event.list$Common_Criminals_Predict,iter=10),lty="dashed",col="139") 
 
plot(event.list$Time,event.list$Military_Predict,type="l",xlab="Time 
Step",ylim=c(0.05,0.1),ylab="Probability",main="'Military' OAB Probability over 
Time",col="2",col.main="4",font.lab="2",font.main="2") 
lines(lowess(event.list$Time,event.list$Military_Predict,iter=10),lty="dashed",col="139") 
 
plot(event.list$Time,event.list$Government_Predict,type="l",xlab="Time 
Step",ylim=c(0.4,0.7),ylab="Probability",main="'Government' OAB Probability over 
Time",col="2",col.main="4",font.lab="2",font.main="2") 
lines(lowess(event.list$Time,event.list$Government_Predict,iter=10),lty="dashed",col="139") 
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plot(event.list$Time,event.list$Foreign_Countries_Predict,type="l",xlab="Time 
Step",ylim=c(0.01,0.04),ylab="Probability",main="'Foreign Countries' OAB Probability over 
Time",col="2",col.main="4",font.lab="2",font.main="2") 
lines(lowess(event.list$Time,event.list$Foreign_Countries_Predict,iter=10),lty="dashed",col="139"
) 
   
sh.elist <- event.list[,-c(1,2)] 
delta.event <- cumsum(sh.elist) 
delta.event <- cbind(data.frame(c(1:201)),delta.event) 
names(delta.event) <- 
c("Time","X2_Delta","X4_Delta","X5_Delta","X10_Delta","Rebel_Delta","Terrorist_Delta", 
"Criminal_Delta","Military_Delta","Government_Delta","Foreign_Delta") 
 
## Issue Stance Score Cumulative Plots 
par(mfrow=c(2,2)) 
plot(delta.event$Time,delta.event$X2_Delta,type="l",xlab="Time Step",ylab="Issue Stance Score 
Delta",main="Change in 'U.S. Assistance to Nigeria' Issue Stance Score over 
Time",col="2",col.main="4",font.lab="2",font.main="2") 
 
plot(delta.event$Time,delta.event$X4_Delta,type="l",xlab="Time Step",ylab="Issue Stance Score 
Delta",main="Change in 'Social & Essential Services' Issue Stance Score over 
Time",col="2",col.main="4",font.lab="2",font.main="2") 
 
plot(delta.event$Time,delta.event$X5_Delta,type="l",xlab="Time Step",ylab="Issue Stance Score 
Delta",main="Change in 'Trust in Government Agencies' Issue Stance Score over 
Time",col="2",col.main="4",font.lab="2",font.main="2") 
 
plot(delta.event$Time,delta.event$X10_Delta,type="l",xlab="Time Step",ylab="Issue Stance Score 
Delta",main="Change in 'Democracy' Issue Stance Score over 
Time",col="2",col.main="4",font.lab="2",font.main="2") 
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